skip to main content


Title: Cryofouling avoidance in the Antarctic scallop Adamussium colbecki
Abstract The presence of supercooled water in polar regions causes anchor ice to grow on submerged objects, generating costly problems for engineered materials and life-endangering risks for benthic communities. The factors driving underwater ice accretion are poorly understood, and passive prevention mechanisms remain unknown. Here we report that the Antarctic scallop Adamussium colbecki appears to remain ice-free in shallow Antarctic marine environments where underwater ice growth is prevalent. In contrast, scallops colonized by bush sponges in the same microhabitat grow ice and are removed from the population. Characterization of the Antarctic scallop shells revealed a hierarchical micro-ridge structure with sub-micron nano-ridges which promotes directed icing. This concentrates the formation of ice on the growth rings while leaving the regions in between free of ice, and appears to reduce ice-to-shell adhesion when compared to temperate species that do not possess highly ordered surface structures. The ability to control the formation of ice may enable passive underwater anti-icing protection, with the removal of ice possibly facilitated by ocean currents or scallop movements. We term this behavior cryofouling avoidance. We posit that the evolution of natural anti-icing structures is a key trait for the survival of Antarctic scallops in anchor ice zones.  more » « less
Award ID(s):
1644196
NSF-PAR ID:
10313884
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Communications Biology
Volume:
5
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ice scallops are a small-scale (5–20 cm) quasi-periodic ripple pattern that occurs at the ice–water interface. Previous work has suggested that scallops form due to a self-reinforcing interaction between an evolving ice-surface geometry, an adjacent turbulent flow field and the resulting differential melt rates that occur along the interface. In this study, we perform a series of laboratory experiments in a refrigerated flume to quantitatively investigate the mechanisms of scallop formation and evolution in high resolution. Using particle image velocimetry, we probe an evolving ice–water boundary layer at sub-millimetre scales and 15 Hz frequency. Our data reveal three distinct regimes of ice–water interface evolution: a transition from flat to scalloped ice; an equilibrium scallop geometry; and an adjusting scallop interface. We find that scalloped-ice geometry produces a clear modification to the ice–water boundary layer, characterized by a time-mean recirculating eddy feature that forms in the scallop trough. Our primary finding is that scallops form due to a self-reinforcing feedback between the ice-interface geometry and shear production of turbulent kinetic energy in the flow interior. The length of this shear production zone is therefore hypothesized to set the scallop wavelength. 
    more » « less
  2. null (Ed.)
    Ecosystem engineers such as the Antarctic scallop (Adamussium colbecki) shape marine communities. Thus, changes to their lifespan and growth could have far-reaching effects on other organisms. Sea ice is critical to polar marine ecosystem function, attenuating light and thereby affecting nutrient availability. Sea ice could therefore impact longevity and growth in polar bivalves unless temperature is the overriding factor. Here, we compare the longevity and growth of A. colbecki from two Antarctic sites: Explorers Cove and Bay of Sails, which differ by sea-ice cover, but share similar seawater temperatures, the coldest on Earth (-1.97°C). We hypothesize that scallops from the multiannual sea-ice site will have slower growth and greater longevity. We found maximum ages to be similar at both sites (18–19 years). Growth was slower, with higher inter-individual variability, under multiannual sea ice than under annual sea ice, which we attribute to patchier nutrient availability under multiannual sea ice. Contrary to expectations, A. colbecki growth, but not longevity, is affected by sea-ice duration when temperatures are comparable. Recent dramatic reductions in Antarctic sea ice and predicted temperature increases may irrevocably alter the life histories of this ecosystem engineer and other polar organisms. 
    more » « less
  3. null (Ed.)
    The Antarctic scallop Adamussium colbecki may be a crucial paleoenvironmental proxy for Antarctic sea ice during the Holocene. Sea ice can melt annually or persist for multiple years, with implications for the diet and growth of this ecosystem engineer. Subtle growth variations under each sea ice regime could be analyzed using striae (surficial concentric ridges) that putatively form fortnightly in juveniles. Previous work described alternating groups of widely spaced striae (summer) and narrowly spaced striae (winter). Each group may have 12 striae, or a pair of wide and narrow groups (cycle) may have ~ 28; both scenarios suggests approximate tidal (lunar) periodicity in striae formation. However, consistency of striae formation (total striae per valve and group) must be assessed in different environments, as factors such as sea ice or temperature could affect striae growth. We examined striae number, groups, and cycles in juvenile growth (< 50 mm) using scallops collected from two sites in western McMurdo Sound, Antarctica, that differ by sea-ice cover: Explorers Cove (EC) and Bay of Sails (BOS). Both sites have similar summer temperatures (-1.97°C), but EC has multi-annual sea ice whereas BOS has annual sea ice. We predict that annual melt and subsequent phytoplankton blooms likely induce a stronger environmental control than lunar periodicity. Thus, BOS scallops should have equal striae in wide and narrow groups, whereas EC should have fewer striae per wide group and fewer total striae as summer food availability would be greater at BOS and EC valves may cease growth in lower nutrient conditions. Median striae per wide or narrow group was similar at both sites (~12) and median total striae did not differ significantly between sites (EC: 188.5; BOS:183), suggesting striae formation is unaffected by sea ice. Similar median cycles per valve (~5), corroborate previous work that A. colbecki are ~ 5 years old at 50 mm shell height, and ~ 12 striae per group supports lunar periodicity of formation. However, striae per group varied widely (EC: 3–41; BOS 3–38) and 55% of valves had > 182 total striae and 30% had > 208, indicating ages of 7+ and 8+ yrs assuming fortnightly striae formation. Individual striae and group/cycle data contradict each other, calling into question consistent fortnightly striae formation in juvenile A. colbecki. 
    more » « less
  4. null (Ed.)
    Abstract Ecosystem engineers such as the Antarctic scallop ( Adamussium colbecki ) shape marine communities. Thus, changes to their lifespan and growth could have far-reaching effects on other organisms. Sea ice is critical to polar marine ecosystem function, attenuating light and thereby affecting nutrient availability. Sea ice could therefore impact longevity and growth in polar bivalves unless temperature is the overriding factor. Here, we compare the longevity and growth of A. colbecki from two Antarctic sites: Explorers Cove and Bay of Sails, which differ by sea-ice cover, but share similar seawater temperatures, the coldest on Earth (-1.97°C). We hypothesize that scallops from the multiannual sea-ice site will have slower growth and greater longevity. We found maximum ages to be similar at both sites (18–19 years). Growth was slower, with higher inter-individual variability, under multiannual sea ice than under annual sea ice, which we attribute to patchier nutrient availability under multiannual sea ice. Contrary to expectations, A. colbecki growth, but not longevity, is affected by sea-ice duration when temperatures are comparable. Recent dramatic reductions in Antarctic sea ice and predicted temperature increases may irrevocably alter the life histories of this ecosystem engineer and other polar organisms. 
    more » « less
  5. Abstract

    The formation of platelet ice is well known to occur under Antarctic sea ice, where subice platelet layers form from supercooled ice shelf water. In the Arctic, however, platelet ice formation has not been extensively observed, and its formation and morphology currently remain enigmatic. Here, we present the first comprehensive, long‐term in situ observations of a decimeter thick subice platelet layer under free‐drifting pack ice of the Central Arctic in winter. Observations carried out with a remotely operated underwater vehicle (ROV) during the midwinter leg of the MOSAiC drift expedition provide clear evidence of the growth of platelet ice layers from supercooled water present in the ocean mixed layer. This platelet formation takes place under all ice types present during the surveys. Oceanographic data from autonomous observing platforms lead us to the conclusion that platelet ice formation is a widespread but yet overlooked feature of Arctic winter sea ice growth.

     
    more » « less