skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biosand filters for water purification
Hundreds of millions of people worldwide have limited access to safe, clean drinking water. Although for most Americans this problem may seem very far removed from their experience, there are many resources available on the internet that can bring the reality of water scarcity into the classroom. We have found this to be a problem that resonates with many students when they become aware of how it affects people their own age. Experimenting with BSFs is a way for students to participate in solving the problem of water scarcity, poor water quality, and inadequate sanitation that have negatively impacted the health and livelihoods for families around the world. In addition, it can provide students with a voice and empower their capacity in STEM in two ways, first by their authentic engagement in the SEPs, and second, by investigating ways to enhance the efficacy and operation of BSFs that could help those in need of an inexpensive way to purify their water  more » « less
Award ID(s):
1827132
PAR ID:
10313890
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The science teacher
Volume:
2021
Issue:
March/April
ISSN:
1943-4871
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Highlighting the role engineers have in solving community and global challenges has been shown to positively affect students' engineering identity development. Poor water quality and water scarcity have been recognized as a critical global issue by many organizations, including the United Nations. Students of all ages can relate to the importance of having drinkable water through their experiences with thirst, drought, floods, news stories, or just accidentally swallowing salt water while on holiday at a beach. This talk describes the development and implementation of a series of engineering education activities focused on water quality. These activities ranged from three-minute activities for community outreach events to week-long lessons for engineering freshmen. Younger students were able to readily recognize how using different types of filters and natural media can increase the clarity of water with particulate or color contamination. Middle and high school students were able to design and test filter set-ups and learn about the role of nanotechnology in water purification. They also developed analytical and data analysis skills through qualitative and quantitative water quality measurements. Freshman engineering students learned about the water industry, local and global water issues, and performed water quality sampling around their campuses using portable meters that log data via a cell phone app. The activities and results were then used to meet university-course outcomes related to the societal impacts of engineering, statistical analysis, plotting data, and written communication. By centering learning on a tangible and important engineering challenge, this work provides a flexible framework for learning and problem solving that can be tailored to the needs of students from different age groups and for different learning outcomes. 
    more » « less
  2. Abstract Urban communities around the world are grappling with the challenges associated with population increases, drought, and projected water shortages. With a substantial global shortfall between water supply and demand expected by 2030, water planning strategies must adapt to a new reality characterized by higher temperatures and less precipitation, requiring new ways of thinking about water management, use, and governance. Commonplace strategies such as water conservation and nonpotable water reuse might not be sufficient to adequately stretch water supplies in water‐scarce parts of the industrialized world. In the United States, planned potable water reuse (i.e., purification of domestic wastewater for reuse as drinking water) is emerging as a way forward to mitigate water shortages without significant changes to lifestyle, behavior, or infrastructure. But potable reuse is not the only solution: paradigm shifting and disruptive options that more holistically address water scarcity, such as composting toilets and market‐based approaches to water use, are also gaining traction, and they could be pursued alongside or instead of potable water reuse. However, these options would require more significant changes to lifestyles, behavior, infrastructure, and governance. While all of the options considered offer advantages, they each come with new concerns and challenges related to cost, public perception, social norms, and policy. The goal of this work is to consider a number of plausible solutions to water scarcity—partial and complete, traditional and disruptive—to stimulate forward‐looking thinking about the increasingly common global problem of water scarcity. This article is categorized under:Engineering Water > Sustainable Engineering of WaterEngineering Water > Planning Water 
    more » « less
  3. A key issue, whenever people work together to solve a complex problem, is how to divide the problem into parts done by different people and combine the parts into a solution for the whole problem. This paper presents a novel way of doing this with groups of contests called contest webs. Based on the analogy of supply chains for physical products, the method provides incentives for people to (a) reuse work done by themselves and others, (b) simultaneously explore multiple ways of combining interchangeable parts, and (c) work on parts of the problem where they can contribute the most. The paper also describes a field test of this method in an online community of over 50,000 people who are developing proposals for what to do about global climate change. The early results suggest that the method can, indeed, work at scale as intended. 
    more » « less
  4. Scientific computing has become an area of growing importance. Across fields such as biology, education, physics, or others, people are increasingly using scientific computing to model and understand the world around them. Despite the clear need, almost no systematic analysis has been conducted on how students in fields outside of computer science learn to program in the context of scientific computing. Given that many fields do not explicitly teach much programming to their students, they may have to learn this important skill on their own. To help, using rigorous quantitative and qualitative methods, we looked at the process 154 students followed in the context of a randomized controlled trial on alternative styles of programming that can be used in R. Our results suggest that the barriers students face in scientific computing are non-trivial and this work has two core implications: 1) students learning scientific computing on their own struggle significantly in many different ways, even if they have had prior programming training, and 2) the design of the current generation of scientific computing feels like the wild-wild west and the designs can be improved in ways we will enumerate. 
    more » « less
  5. Practical ingenuity is demonstrated in engineering design through many ways. Students and practitioners alike create many iterations of prototypes in solving problems and design challenges. While focus is on the end product and/or the process employed along the way, this study combines these interests to better understand the product and process through the roles of initial prototyping through the creation of such things as alpha prototypes, conceptual mock-ups, and other rapid prototypes. We explore the purposes and affordances of these low-fidelity prototypes in engineering design activity through both synthesis of different perspectives from literature to compose an integrated framework to characterize prototypes that are developed as part of ideation in designing, as well as historic and student examples and case studies. Studying prototyping (activity) and prototypes (artifacts) is a way to studying design thinking and how students and practitioners learn and apply a problem solving process to their work. Prototyping can make readily evident and explicit (through act of creating and the creations themselves) some of the thinking and insights of the engineering designer into the design problem. Initial, low-fidelity prototypes are characterized as prototypes that are not always elaborate depictions containing all the fine details of the design. In fact, features in a prototype do not always appear in the final design. The underpinning of this work is that prototyping, as a process, is an act of externalizing design thinking, embodying it through physical objects. While several prescriptive frameworks have been developed to describe what prototypes prototype and the role of prototype, the role of low-fidelity prototypes, specifically, lacks sufficient attention. We will present prototyping rather as an holistic mindset that can be a means to approach problem solving in a more accessible manner. It can be helpful to apply this sort of mindset approach from these initial problem understanding through functional decomposition to quickly communicate and learn by trial and building in learning loops to oneself, with an engineering design team, and to potential stakeholders outside the team. 
    more » « less