skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Automated Safety Vetting of PLC Code in Real-World Plants
Safety violations in programmable logic controllers (PLCs), caused either by faults or attacks, have recently garnered significant attention. However, prior efforts at PLC code vetting suffer from many drawbacks. Static analyses and verification cause significant false positives and cannot reveal specific runtime contexts. Dynamic analyses and symbolic execution, on the other hand, fail due to their inability to handle real-world PLC programs that are event-driven and timing sensitive. In this paper, we propose VetPLC, a temporal context-aware, program analysis-based approach to produce timed event sequences that can be used for automatic safety vetting. To this end, we (a) perform static program analysis to create timed event causality graphs in order to understand causal relations among events in PLC code and (b) mine temporal invariants from data traces collected in Industrial Control System (ICS) testbeds to quantitatively gauge temporal dependencies that are constrained by machine operations. Our VetPLC prototype has been implemented in 15K lines of code. We evaluate it on 10 real-world scenarios from two different ICS settings. Our experiments show that VetPLC outperforms state-of-the-art techniques and can generate event sequences that can be used to automatically detect hidden safety violations.  more » « less
Award ID(s):
1544901
PAR ID:
10313895
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Symposium on Security and Privacy (SP)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract—Safety violations in programmable logic controllers (PLCs), caused either by faults or attacks, have recently garnered significant attention. However, prior efforts at PLC code vetting suffer from many drawbacks. Static analyses and verification cause significant false positives and cannot reveal specific runtime contexts. Dynamic analyses and symbolic execution, on the other hand, fail due to their inability to handle real-world PLC pro- grams that are event-driven and timing sensitive. In this paper, we propose VETPLC, a temporal context-aware, program analysis- based approach to produce timed event sequences that can be used for automatic safety vetting. To this end, we (a) perform static program analysis to create timed event causality graphs in order to understand causal relations among events in PLC code and (b) mine temporal invariants from data traces collected in Industrial Control System (ICS) testbeds to quantitatively gauge temporal dependencies that are constrained by machine operations. Our VETPLC prototype has been implemented in 15K lines of code. We evaluate it on 10 real-world scenarios from two different ICS settings. Our experiments show that VETPLC outperforms state-of-the-art techniques and can generate event sequences that can be used to automatically detect hidden safety violations. 
    more » « less
  2. Aldrich, Jonathan; Salvaneschi, Guido (Ed.)
    Timing channel attacks are emerging as real-world threats to computer security. In cryptographic systems, an effective countermeasure against timing attacks is the constant-time programming discipline. However, strictly enforcing the discipline manually is both time-consuming and error-prone. While various tools exist for analyzing/verifying constant-time programs, they sacrifice at least one feature among precision, soundness and efficiency. In this paper, we build CtChecker, a sound static analysis for constant-time programming. Under the hood, CtChecker uses a static information flow analysis to identify violations of constant-time discipline. Despite the common wisdom that sound, static information flow analysis lacks precision for real-world applications, we show that by enabling field-sensitivity, context-sensitivity and partial flow-sensitivity, CtChecker reports fewer false positives compared with existing sound tools. Evaluation on real-world cryptographic systems shows that CtChecker analyzes 24K lines of source code in under one minute. Moreover, CtChecker reveals that some repaired code generated by program rewriters supposedly remove timing channels are still not constant-time. 
    more » « less
  3. As part of Industrial Control Systems (ICS), the control logic controls the physical processes of critical infrastructures such as power plants and water and gas distribution. The Programmable Logic Controller (PLC) commonly manages these processes through actuators based on information received from sensor readings. Therefore, boundary checking is essential in ICS because sensor readings and actuator values must be within the safe range to ensure safe and secure ICS operation. In this paper, we propose an ontology-based approach to provide the knowledge required to verify the boundaries of ICS components with respect to their safety and security specifications. For the proof of concept, the formal model of the Programmable Logic Controller (PLC) is created in UPPAAL and validated in UPPAAL-API. Then, the proposed boundary verification algorithm is used to import the required information from the safety/security ontology 
    more » « less
  4. Temporal memory safety bugs, especially use-after-free and double free bugs, pose a major security threat to C programs. Real-world exploits utilizing these bugs enable attackers to read and write arbitrary memory locations, causing disastrous violations of confidentiality, integrity, and availability. Many previous solutions retrofit temporal memory safety to C, but they all either incur high performance overhead and/or miss detecting certain types of temporal memory safety bugs. In this paper, we propose a temporal memory safety solution that is both efficient and comprehensive. Specifically, we extend Checked C, a spatially-safe extension to C, with temporally-safe pointers. These are implemented by combining two techniques: fat pointers and dynamic key-lock checks. We show that the fat-pointer solution significantly improves running time and memory overhead compared to the disjoint-metadata approach that provides the same level of protection. With empirical program data and hands-on experience porting real-world applications, we also show that our solution is practical in terms of backward compatibility---one of the major complaints about fat pointers. 
    more » « less
  5. Static analysis tools have demonstrated effectiveness at finding bugs in real world code. Such tools are increasingly widely adopted to improve software quality in practice. Automated Program Repair (APR) has the potential to further cut down on the cost of improving software quality. However, there is a disconnect between these effective bug-finding tools and APR. Recent advances in APR rely on test cases, making them inapplicable to newly discovered bugs or bugs difficult to test for deterministically (like memory leaks). Additionally, the quality of patches generated to satisfy a test suite is a key challenge. We address these challenges by adapting advances in practical static analysis and verification techniques to enable a new technique that finds and then accurately fixes real bugs without test cases. We present a new automated program repair technique using Separation Logic. At a high-level, our technique reasons over semantic effects of existing program fragments to fix faults related to general pointer safety properties: resource leaks, memory leaks, and null dereferences. The procedure automatically translates identified fragments into source-level patches, and verifies patch correctness with respect to reported faults. In this work we conduct the largest study of automatically fixing undiscovered bugs in real-world code to date. We demonstrate our approach by correctly fixing 55 bugs, including 11 previously undiscovered bugs, in 11 real-world projects. 
    more » « less