- Award ID(s):
- 2053287
- NSF-PAR ID:
- 10314105
- Date Published:
- Journal Name:
- Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials
- Volume:
- 77
- Issue:
- 4
- ISSN:
- 2052-5206
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Two new alkali vanadate carbonates with divalent transition metals have been synthesized as large single crystals via a high-temperature (600 °C) hydrothermal technique. Compound I , Rb 2 Mn 3 (VO 4 ) 2 CO 3 , crystallizes in the trigonal crystal system in the space group P 3̄1 c , and compound II , K 2 Co 3 (VO 4 ) 2 CO 3 , crystallizes in the hexagonal space group P 6 3 / m . Both structures contain honeycomb layers and triangular lattices made from edge-sharing MO 6 octahedra and MO 5 trigonal bipyramids, respectively. The honeycomb and triangular layers are connected along the c -axis through tetrahedral [VO 4 ] groups. The MO 5 units are connected with each other by carbonate groups in the ab -plane by forming a triangular magnetic lattice. The difference in space groups between I and II was also investigated with Density Functional Theory (DFT) calculations. Single crystal magnetic characterization of I indicates three magnetic transitions at 77 K, 2.3 K, and 1.5 K. The corresponding magnetic structures for each magnetic transition of I were determined using single crystal neutron diffraction. At 77 K the compound orders in the MnO 6 -honeycomb layer in a Néel-type antiferromagnetic orientation while the MnO 5 triangular lattice ordered below 2.3 K in a colinear ‘up–up–down’ fashion, followed by a planar ‘Y’ type magnetic structure. K 2 Co 3 (VO 4 ) 2 CO 3 ( II ) exhibits a canted antiferromagnetic ordering below T N = 8 K. The Curie–Weiss fit (200–350 K) gives a Curie–Weiss temperature of −42 K suggesting a dominant antiferromagnetic coupling in the Co 2+ magnetic sublattices.more » « less
-
The results of the structural determination, magnetic characterization, and theoretical calculations of a new ruthenium-oxo complex, Li 4 [Ru 2 OCl 10 ]·10H 2 O, are presented. Single crystals were grown using solvent methods and the crystal structure was characterized by single crystal X-ray diffraction. Li 4 [Ru 2 OCl 10 ]·10H 2 O crystallizes into a low-symmetry triclinic structure ( P 1 ) due to the much smaller Li + cation compared to K + cation in the tetragonal complex K 4 [Ru 2 OCl 10 ]·H 2 O. The X-ray photoelectron spectra confirm only the single valent Ru 4+ in Li 4 [Ru 2 OCl 10 ]·10H 2 O even though two distinct Ru sites exist in the crystal structure. Magnetic measurements reveal the diamagnetic property of Li 4 [Ru 2 OCl 10 ]·10H 2 O with unpaired electrons existing on Ru 4+ . Furthermore, the molecular orbital analysis matches well with the observed UV and magnetic measurements.more » « less
-
A novel antiferromagnetic semiconductor, Eu 3 Sn 2 P 4 , has been discovered. Single crystals of Eu 3 Sn 2 P 4 were prepared using the Sn self-flux method. The crystal structure determined by single crystal X-ray diffraction shows that Eu 3 Sn 2 P 4 crystallizes in the orthorhombic structure with the space group Cmca (Pearson Symbol, oP 216). Six Sn–Sn dimers connected by P atoms form a Sn 12 P 24 crown-shaped cluster with a Eu atom located in the center. Magnetization measurements indicate that the system orders antiferromagnetically below a T N ∼14 K at a low field and undergoes a metamagnetic transition at a high field when T < T N . The effective magnetic moment is 7.41(3) μ B per Eu, corresponding to Eu 2+ . The electric resistivity reveals a non-monotonic temperature dependence with non-metallic behavior below ∼60 K, consistent with the band structure calculations. By fitting the data using the thermally activated resistivity formula, we estimate the energy gap to be ∼0.14 eV. Below T N , the resistivity tends to saturate, suggesting the reduction of charge-spin scattering.more » « less
-
null (Ed.)Low dimensional magnetism has been powerfully boosted as a promising candidate for numerous applications. The stability of the long-range magnetic order is directly dependent on the electronic structure and the relative strength of the competing magnetic exchange constants. Here, we report a comparative pressure-dependent theoretical and experimental study of the electronic structure and exchange interactions of two-dimensional ferromagnets CrBr 3 and Cr 2 Ge 2 Te 6 . While CrBr 3 is found to be a Mott–Hubbard-like insulator, Cr 2 Ge 2 Te 6 shows a charge-transfer character due to the broader character of the Te 5p bands at the Fermi level. This different electronic behaviour is responsible for the robust insulating state of CrBr 3 , in which the magnetic exchange constants evolve monotonically with pressure, and the proximity to a metal–insulator transition predicted for Cr 2 Ge 2 Te 6 , which causes a non-monotonic evolution of its magnetic ordering temperature. We provide a microscopic understanding for the pressure evolution of the magnetic properties of the two systems.more » « less
-
Abstract Chromia (Cr2O3) is a magnetoelectric oxide that permits voltage‐control of the antiferromagnetic (AFM) order, but it suffers technological constraints due to its low Néel Temperature (
T N≈307 K) and the need of a symmetry‐breaking applied magnetic field to achieve reversal of the Néel vector. Recently, boron (B) doping of Cr2O3films led to an increaseT N>400 K and allowed the realization of voltage magnetic‐field free controlled Néel vector rotation. Here, the impact of B doping is directly imaged on the formation of AFM domains in Cr2O3thin films and elucidates the mechanism of voltage‐controlled manipulation of the spin structure using nitrogen‐vacancy (NV) scanning probe magnetometry. A stark reduction and thickness dependence of domain size in B‐doped Cr2O3(B:Cr2O3) films is found, explained by the increased germ density, likely associated with the B doping. By reconstructing the surface magnetization from the NV stray‐field maps, a qualitative distinction between the undoped and B‐doped Cr2O3films is found, manifested by the histogram distribution of the AFM ordering, that is, 180° domains for pure films, and 90° domains for B:Cr2O3films. Additionally, NV imaging of voltage‐controlled B‐doped Cr2O3devices corroborates the 90° rotation of the AFM domains observed in magnetotransport measurement.