skip to main content


Title: Bringing sedimentology and stratigraphy into the StraboSpot data management system
Abstract The StraboSpot data system provides field-based geologists the ability to digitally collect, archive, query, and share data. Recent efforts have expanded this data system with the vocabulary, standards, and workflow utilized by the sedimentary geology community. A standardized vocabulary that honors typical workflows for collecting sedimentologic and stratigraphic field and laboratory data was developed through a series of focused workshops and vetted/refined through subsequent workshops and field trips. This new vocabulary was designed to fit within the underlying structure of StraboSpot and resulted in the expansion of the existing data structure. Although the map-based approach of StraboSpot did not fully conform to the workflow for sedimentary geologists, new functions were developed for the sedimentary community to facilitate descriptions, interpretations, and the plotting of measured sections to document stratigraphic position and relationships between data types. Consequently, a new modality was added to StraboSpot—Strat Mode—which now accommodates sedimentary workflows that enable users to document stratigraphic positions and relationships and automates construction of measured stratigraphic sections. Strat Mode facilitates data collection and co-location of multiple data types (e.g., descriptive observations, images, samples, and measurements) in geographic and stratigraphic coordinates across multiple scales, thus preserving spatial and stratigraphic relationships in the data structure. Incorporating these digital technologies will lead to better research communication in sedimentology through a common vocabulary, shared standards, and open data archiving and sharing.  more » « less
Award ID(s):
1639734 1928389
NSF-PAR ID:
10314125
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geosphere
Volume:
17
Issue:
6
ISSN:
1553-040X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. he StraboSpot data system provides field-based geologists the ability to digitally collect, archive, query, and share data. Recent efforts have expanded this data system with the vocabulary, standards, and workflow utilized by the sedimentary geology community. A standardized vocabulary that hon-ors typical workflows for collecting sedimentologic and stratigraphic field and laboratory data was developed through a series of focused workshops and vetted/refined through subsequent workshops and field trips. This new vocabulary was designed to fit within the underlying structure of StraboSpot and resulted in the expansion of the existing data structure. Although the map-based approach of StraboSpot did not fully conform to the workflow for sedimentary geologists, new functions were developed for the sedimen-tary community to facilitate descriptions, interpretations, and the plotting of measured sections to document stratigraphic position and relationships between data types. Consequently, a new modality was added to StraboSpot—Strat Mode—which now accommodates sedimentary workflows that enable users to document stratigraphic positions and relationships and automates construction of measured stratigraphic sections. Strat Mode facilitates data collection and co-location of multiple data types (e.g., descriptive observa-tions, images, samples, and measurements) in geographic and stratigraphic coordinates across multiple scales, thus preserving spatial and stratigraphic relationships in the data structure. Incorporating these digital technologies will lead to better research communication in sedimentology through a common vocabulary, shared standards, and open data archiving and sharing. 
    more » « less
  2. Tephra is a unique volcanic product that plays an unparalleled role in understanding past eruptions, the long-term behavior of volcanoes, and the effects of volcanism on climate and the environment. Tephra deposits also provide spatially widespread, extremely high-resolution time-stratigraphic markers across a range of sedimentary settings and are used by many disciplines (e.g. volcanology, seismotectonics, climate science, archaeology, ecology, public health and ash impact assessment). In the last two decades, tephra studies have become more interdisciplinary in nature but are challenged by a lack of standardization that often prevents comparison amongst various regions and across disciplines. To address this challenge, the global tephra community has come together through a series of workshops to establish best practice recommendations for tephra studies from sample collection through analysis and data reporting. This new standardized framework will facilitate consistent tephra documentation and parametrization, foster interdisciplinary communication, and improve effectiveness of data sharing among diverse communities of researchers. One specific goal is to use the best practice guidelines to inform digital tool and data repository development. Here we report on 1) a new set of templates for tephra sample documentation, geochemical method documentation and data reporting using recommended best- practice data and metadata fields, 2) a new tephra module added to StraboSpot, an open source geologic mapping and data- recording multi-platform software application, and 3) new implementations and cross-mapping of metadata requirements at SESAR (System for Earth Sample Registration) and EarthChem. Addition of tephra-specific fields to StraboSpot enables users to consistently collect and report essential tephra data in the field which is then automatically saved to an online data repository. A new tephra portal on the EarthChem website will allow users to follow simple workflows to register tephra samples at SESAR and submit microanalytical data to EarthChem. 
    more » « less
  3. Tephra is a unique volcanic product with an unparalleled role in understanding past eruptions, the long-term behavior of volcanoes, and the effects of volcanism on climate and the environment. Tephra deposits also provide spatially widespread, extremely high-resolution time-stratigraphic markers across a range of sedimentary settings and are used by many disciplines (e.g. volcanology, seismotectonics, climate science, archaeology, ecology, public health, ash impact assessment). The interdisciplinary shift in tephra studies over the last two decades is challenged by the lack of standardization that often prevents comparison amongst various regions and across disciplines. To address this challenge, the global tephra community has united through a series of workshops to establish best practice recommendations for tephra studies, including sample collection, analysis and data reporting (https://doi.org/10.5281/zenodo.3866266). This new standardized framework is being incorporated into digital tools and data repositories and supports FAIR (findable, accessible, interoperable and reusable) data principles. Widespread adoption will facilitate consistent tephra documentation and parametrization, foster interdisciplinary communication and improve the effectiveness of data sharing among diverse communities of researchers. Here we report on recent implementations of the best-practice recommendations including: 1) a set of templates for samples, methods documentation, and data reporting, 2) a tephra module in the StraboSpot field app (https://strabospot.org), 3) implementations at SESAR and EarthChem, including a tephra community portal (https://earthchem.org/communities/tephra/), 4) implementation in the Sparrow laboratory data system (https://sparrow-data.org/), and 5) a new manuscript supporting the framework. Data linking is facilitated by extensive use of unique identifiers including ORCIDs for people, IGSNs for field sites and samples; DOIs for publications, data, and methods; and Smithsonian IDs for volcanoes and eruptions. These developments allow users to follow simple workflows to archive data and facilitate faster access to key research by secondary users. 
    more » « less
  4. An implementation of the Sparrow data system (https://sparrow-data.org) is currently being developed to support laboratory workflows for sample preparation, geochemical analysis, and SEM imaging in support of tephra research. Tephra, consisting of fragmental material ejected from volcanoes, has a multidisciplinary array of applications from volcanology to geochronology, archaeology, environmental change, and more. The international tephra research community has developed a comprehensive set of recommendations for data and metadata collection and reporting (https://doi.org/10.5281/zenodo.3866266) as part of a broader effort to adopt FAIR practices. Implementations of these recommendations now exist for field data via StraboSpot (https://strabospot.org/files/StraboSpotTephraHelp.pdf) and for samples, analytical methods, and geochemistry via SESAR and EarthChem (https://earthchem.org/communities/tephra/). Implementing these recommended practices in Sparrow helps to (1) cover laboratory workflows between field sample collection and project data archiving and (2) address a key researcher pain point. As re-emphasized by participants in the Tephra Fusion 2022 workshop earlier this year (Wallace et al., this meeting), the huge workload currently needed to capture and organize data and metadata in preparation for archiving in community data repositories is a major obstacle to achieving FAIR practices. By capturing this information on the fly during laboratory workflows and integrating it together in a single data system, this challenge may be overcome. We are implementing the tephra community recommendations as extensions to Sparrow’s core database schema. Data import pipelines and user interfaces to streamline metadata capture are also being developed. In the longer term, we aim to achieve interoperability with an ecosystem of tools and repositories like StraboSpot, SESAR, EarthChem, and Throughput. The results of these developments will be applicable not just to tephra but also to other research areas which utilize similar laboratory and analytical methods - e.g. sedimentology, mineralogy, and petrology. 
    more » « less
  5. Abstract

    Paleoscience data are extremely heterogeneous; hundreds of different types of measurements and reconstructions are routinely made by scientists on a variety of types of physical samples. This heterogeneity is one of the biggest barriers to finding paleoclimatic records, to building large‐scale data products, and to the use of paleoscience data beyond the community of specialists. Here, we document the Paleoenvironmental Standard Terms (PaST) thesaurus, the first authoritative vocabulary of standardized variable names for paleoclimatic and paleoenvironmental data developed in a formal knowledge organization structure. This structure is designed to improve data set discovery, support automated processing of data, and provide connectivity to other vocabularies. PaST is now used operationally at the World Data Service for Paleoclimatology (WDS‐Paleo), one of the largest repositories of paleoscience information. Terms from the PaST thesaurus standardize a broad array of paleoenvironmental and paleoclimatic measured and inferred variables, providing enough detail for accurate and precise data discovery and thereby promoting data reuse. We describe the main design decisions and features of the thesaurus, the governance structure for ongoing maintenance, and WDS‐Paleo services that now employ PaST. These services include an advanced search by variable name, an interface for thesaurus navigation, and a machine‐readable representation in the Simple Knowledge Organization System (SKOS) standard. This overview is designed for developers of thesauri, data contributors, and users of the WDS‐Paleo, and serves as a building block for future efforts within the broader paleoscience community to improve how data are described for long‐term findability, accessibility, interoperability, and reusability.

     
    more » « less