skip to main content

This content will become publicly available on October 1, 2022

Title: Exploration of the dynamics of neuro-cognition during TRIZ Paper DETC2021-70412
The Theory of Inventive Problem Solving (TRIZ) method and toolkit provides a well-structured approach to support engineering design with pre-defined steps: interpret and define the problem, search for standard engineering parameters, search for inventive principles to adapt, and generate final solutions. The research presented in this paper explores the neurocognitive differences of each of these steps. We measured the neuro-cognitive activation in the prefrontal cortex (PFC) of 30 engineering students. Neuro-cognitive activation was recorded while students completed an engineering design task. The results show a varying activation pattern. When interpreting and defining the problem, higher activation is found in the left PFC, generally associated with goal directed planning and making analytical judgement when interpreting and defining the problem. Neuro-cognitive activation shifts to the right PFC during the search process, a region usually involved in exploring the problem space. During solution generation more activation occurs in the medial PFC, a region generally related to making associations. The findings offer new insights and evidence explaining the dynamic neuro-cognitive activations when using TRIZ in engineering design.
Authors:
; ; ;
Award ID(s):
1929896
Publication Date:
NSF-PAR ID:
10314196
Journal Name:
ASME-IDETC 2021
Sponsoring Org:
National Science Foundation
More Like this
  1. The Theory of Inventive Problem Solving (TRIZ) method and toolkit provides a well-structured approach to support engineering design with pre-defined steps: interpret and define the problem, search for standard engineering parameters, search for inventive principles to adapt, and generate final solutions. The research presented in this paper explores the neuro-cognitive differences of each of these steps. We measured the neuro-cognitive activation in the prefrontal cortex (PFC) of 30 engineering students. Neuro-cognitive activation was recorded while students completed an engineering design task. The results show a varying activation pattern. When interpreting and defining the problem, higher activation is found in themore »left PFC, generally associated with goal directed planning and making analytical. Neuro-cognitive activation shifts to the right PFC during the search process, a region usually involved in exploring the problem space. During solution generation more activation occurs in the medial PFC, a region generally related to making associations. The findings offer new insights and evidence explaining the dynamic neuro-cognitive activations when using TRIZ in engineering design.« less
  2. Abstract The research presented in this paper explores features of temporal design neurocognition by comparing regions of activation in the brain during concept generation. A total of 27 engineering graduate students used brainstorming, morphological analysis, and TRIZ to generate concepts to design problems. Students' brain activation in their prefrontal cortex (PFC) was measured using functional near-infrared spectroscopy (fNIRS). Temporal activations were compared between techniques. When using brainstorming and morphological analysis, highly activated regions are consistently situated in the medial and right part of the PFC over time. For both techniques, the temporal neuro-physiological patterns are similar. Cognitive functions associated tomore »the medial and right part of the PFC suggest an association with divergent thinking and adaptative decision making. In contrast, highly activated regions over time when using TRIZ appear in the medial or the left part of the prefrontal cortex, usually associated with goal directed planning.« less
  3. The research presented in this paper explores features of temporal design neurocognition by comparing regions of activation in the brain during concept generation. A total of 27 engineering graduate students used brainstorming, morphological analysis, and TRIZ to generate concepts to design problems. Students' brain activation in their prefrontal cortex (PFC) was measured using functional near-infrared spectroscopy (fNIRS). Temporal activations were compared between techniques. When using brainstorming and morphological analysis, highly activated regions are consistently situated in the medial and right part of the PFC over time. For both techniques, the temporal neuro-physiological patterns are similar. Cognitive functions associated to themore »medial and right part of the PFC suggest an association with divergent thinking and adaptive decision making. In contrast, highly activated regions over time when using TRIZ appear in the medial or the left part of the prefrontal cortex, usually associated with goal directed planning.« less
  4. Abstract This paper presents the results of studying the brain activations of 30 engineering students when using three different design concept generation techniques: brainstorming, morphological analysis, and TRIZ. Changes in students’ brain activation in the prefrontal cortex were measured using functional near-infrared spectroscopy. The results are based on the area under the curve analysis of oxygenated hemodynamic response as well as an assessment of functional connectivity using Pearson’s correlation to compare students’ cognitive brain activations using these three different ideation techniques. The results indicate that brainstorming and morphological analysis demand more cognitive activation across the prefrontal cortex (PFC) compared tomore »TRIZ. The highest cognitive activation when brainstorming and using morphological analysis is in the right dorsolateral PFC (DLPFC) and ventrolateral PFC. These regions are associated with divergent thinking and ill-defined problem-solving. TRIZ produces more cognitive activation in the left DLPFC. This region is associated with convergent thinking and making judgments. Morphological analysis and TRIZ also enable greater coordination (i.e., synchronized activation) between brain regions. These findings offer new evidence that structured techniques like TRIZ reduce cognitive activation, change patterns of activation and increase coordination between regions in the brain.« less
  5. Abstract The research presented in this paper explores how engineering students cognitively manage concept generation and measures the effects of additional dimensions of sustainability on design cognition. Twelve first-year and eight senior engineering students generated solutions to 10 design problems. Half of the problems included additional dimensions of sustainability. The number of unique design solutions students developed and their neurocognitive activation were measured. Without additional requirements for sustainability, first-year students generated significantly more solutions than senior engineering students. First-year students recruited higher cortical activation in the brain region generally associated with cognitive flexibility, and divergent and convergent thinking. Senior engineeringmore »students recruited higher activation in the brain region generally associated with uncertainty processing and self-reflection. When additional dimensions of sustainability were present, first-year students produced fewer solutions. Senior engineering students generated a similar number of solutions. Senior engineering students required less cortical activation to generate a similar number of solutions. The varying patterns of cortical activation and different number of solutions between first-year and senior engineering students begin to highlight cognitive differences in how students manage and retrieve information in their brain during design. Students’ ability to manage complex requirements like sustainability may improve with education.« less