skip to main content


Title: Stressors Reveal Ecosystems' Hidden Characteristics
Abstract

Vegetation responds dynamically to local microclimates at both short and long time scales via mechanisms ranging from physiological behaviors, such as stomatal closure, to acclimation and adaptation. These responses influence the carbon, water, and energy cycles directly and are therefore crucial to understanding and predicting Earth system responses to a changing climate. Several recent studies have demonstrated that differences in microclimate can induce structural and functional acclimations, and potentially adaptations, within the same ecosystem. Such microclimate divergence can be caused by variability in slopes, disturbance history, or even localized resource availability. Ecosystem stressors such as low soil water availability, limited photoperiod, or high vapor pressure deficit have been shown to reveal the large impact of the subtle differences within these systems such as the number of sun versus shade leaves or differences in whole‐plant water acquisition and use. These findings highlight the linkages between plant canopy structure and ecosystem function, alongside the need for comprehensive analyses of vegetation within the broader context of its environment. This commentary addresses some of the key implications of ecosystem stress responses and accompanying acclimations across three ecosystem types for ecosystem ecology, plant physiology, ecohydrology and trait‐based modeling of vegetation‐climate dynamics.

 
more » « less
Award ID(s):
2046768
NSF-PAR ID:
10445997
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
8
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land‐use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.

     
    more » « less
  2. Abstract

    Arid ecosystems are strongly limited by water availability, and precipitation plays a major role in the dynamics of all species in arid regions, as well as the ecosystem processes that occur there. However, understanding how biotic interactions mediate long‐term responses of dryland ecosystems to rainfall remains very fragmented. We report on a unique large‐scale field experiment spanning 25 yr and three trophic levels (plants, small mammal herbivores, predators) in a dryland ecosystem in the northern Chilean Mediterranean Region where we assessed how biotic interactions influence the long‐term plant community responses to precipitation. As the most persistent ecological changes in dryland systems may result from changes in the structure, cover, and composition of the perennial vegetation, we emphasized the interplay between bottom‐up and top‐down controls of perennial plants in our analyses. Rainfall was the primary factor affecting the dynamics of, and interactions among, plants and small mammals. Ephemeral plant cover dynamics closely tracked short‐term annual rainfall, but seemed unaffected by top‐down controls (herbivory). In contrast, the response of the perennial plant cover to precipitation was mediated by (1) a complex interplay between subtle top‐down (herbivory) controls that become more apparent in the long‐term, (2) competition with ephemeral plants during wet years, and (3) an indirect effect of predators on subdominant shrubs and perennial herbs. This long‐term field experiment highlights how climate‐induced responses of arid perennial vegetation are influenced by interactions across trophic levels and temporal scales. In the face of global change, understanding how multi‐trophic controls mediate dryland vegetation responses to climate is essential to properly managing the conservation of biodiversity in arid systems.

     
    more » « less
  3. Abstract Aims

    Bryophytes can cover three quarters of the ground surface, play key ecological functions, and increase biodiversity in mesic high‐elevation conifer forests of the temperate zone. Forest gaps affect species coexistence (and ecosystem functions) as suggested by the gap and gap‐size partitioning hypotheses (GPH,GSPH). Here we test these hypotheses in the context of high‐elevation forest bryophyte communities and their functional attributes.

    Study Site

    Spruce–fir forests on Whiteface Mountain, NY,USA.

    Methods

    We characterized canopy openness, microclimate, forest floor substrates, vascular vegetation cover, and moss layer (cover, common species, and functional attributes) in three canopy openness environments (gap, gap edge, forest canopy) across 20 gaps (fir waves) (n = 60); the functional attributes were based on 16 morphologic, reproductive, and ecological bryophyte plant functional traits (PFTs). We testedGPHandGSPHrelative to bryophyte community metrics (cover, composition), traits, and trait functional sensitivity (functional dispersion;FDis) using indicator species analysis, ordination, and regression.

    Results

    Canopy openness drove gradients in ground‐level temperature, substrate abundance and heterogeneity (beta diversity), and understory vascular vegetation cover. TheGPHwas consistent with (a) the abundance patterns of forest canopy indicator species (Dicranum fuscescens,Hypnum imponens, andTetraphis pellucida), and (b)FDisbased on threePFTs (growth form, fertility, and acidity), both increasing with canopy cover. We did not find support forGPHin the remaining species or traits, or forGSPHin general; gap width (12–44 m) was not related to environmental or bryophyte community gradients.

    Conclusions

    The observed lack of variation in most bryophyte metrics across canopy environments suggests high resistance of the bryophyte layer to natural canopy gaps in high‐elevation forests. However, responses of forest canopy indicator species suggest that canopy mortality, potentially increased by changing climate or insect pests, may cause declines in some forest canopy species and consequently in the functional diversity of bryophyte communities.

     
    more » « less
  4. Vegetation processes are fundamentally limited by nutrient and water availability, the uptake of which is mediated by plant roots in terrestrial ecosystems. While tropical forests play a central role in global water, carbon, and nutrient cycling, we know very little about tradeoffs and synergies in root traits that respond to resource scarcity. Tropical trees face a unique set of resource limitations, with rock-derived nutrients and moisture seasonality governing many ecosystem functions, and nutrient versus water availability often separated spatially and temporally. Root traits that characterize biomass, depth distributions, production and phenology, morphology, physiology, chemistry, and symbiotic relationships can be predictive of plants’ capacities to access and acquire nutrients and water, with links to aboveground processes like transpiration, wood productivity, and leaf phenology. In this review, we identify an emerging trend in the literature that tropical fine root biomass and production in surface soils are greatest in infertile or sufficiently moist soils. We also identify interesting paradoxes in tropical forest root responses to changing resources that merit further exploration. For example, specific root length, which typically increases under resource scarcity to expand the volume of soil explored, instead can increase with greater base cation availability, both across natural tropical forest gradients and in fertilization experiments. Also, nutrient additions, rather than reducing mycorrhizal colonization of fine roots as might be expected, increased colonization rates under scenarios of water scarcity in some forests. Efforts to include fine root traits and functions in vegetation models have grown more sophisticated over time, yet there is a disconnect between the emphasis in models characterizing nutrient and water uptake rates and carbon costs versus the emphasis in field experiments on measuring root biomass, production, and morphology in response to changes in resource availability. Closer integration of field and modeling efforts could connect mechanistic investigation of fine-root dynamics to ecosystem-scale understanding of nutrient and water cycling, allowing us to better predict tropical forest-climate feedbacks. 
    more » « less
  5. Abstract

    Savannas are water‐limited ecosystems characterized by two dominant plant types: trees and an understory primarily made up grass. Different phenology and root structures of these plant types complicate how savanna primary productivity responds to changes in water availability. We tested the hypothesis that productivity in savannas is controlled by the temporal and vertical distribution of soil water content (SWC) and differences in growing season length of understory and tree plant functional types. To quantify the relationship between tree, understory, and savanna‐wide phenology and productivity, we used PhenoCam and satellite observations surrounding an eddy covariance tower at a semiarid savanna site in Arizona, USA. We distinguished between SWC across two different depth intervals (shallow, <0–30 cm and deep, >30–100 cm). We found that tree greenness increased with SWC at both depths, while understory greenness was only sensitive to the shallower SWC measurements. Onset of ecosystem dormancy, estimated from satellite observations close to the eddy covariance tower, explained more variability in annual gross primary productivity (GPP) than in other phenometrics. Higher SWC led to an extended growing season, caused by delayed dormancy in trees, but the understory showed no evidence of delayed dormancy in wetter periods. We infer that the timing of ecosystem scale dormancy, driven by trees, is important in understanding changes in a savanna's GPP. These findings highlight the important effects of rainfall during the winter. These findings suggest that savanna GPP is conditional on different responses to moisture availability in each of the dominant vegetation components.

     
    more » « less