skip to main content


Title: Evaluating Grasping Visualizations and Control Modes in a VR Game
A primary goal of the Virtual Reality ( VR ) community is to build fully immersive and presence-inducing environments with seamless and natural interactions. To reach this goal, researchers are investigating how to best directly use our hands to interact with a virtual environment using hand tracking. Most studies in this field require participants to perform repetitive tasks. In this article, we investigate if results of such studies translate into a real application and game-like experience. We designed a virtual escape room in which participants interact with various objects to gather clues and complete puzzles. In a between-subjects study, we examine the effects of two input modalities (controllers vs. hand tracking) and two grasping visualizations (continuously tracked hands vs. virtual hands that disappear when grasping) on ownership, realism, efficiency, enjoyment, and presence. Our results show that ownership, realism, enjoyment, and presence increased when using hand tracking compared to controllers. Visualizing the tracked hands during grasps leads to higher ratings in one of our ownership questions and one of our enjoyment questions compared to having the virtual hands disappear during grasps as is common in many applications. We also confirm some of the main results of two studies that have a repetitive design in a more realistic gaming scenario that might be closer to a typical user experience.  more » « less
Award ID(s):
1652210
NSF-PAR ID:
10314326
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Applied Perception
Volume:
18
Issue:
4
ISSN:
1544-3558
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we investigate the influence of different visualizations on a manipulation task in virtual reality (VR). Without the haptic feedback of the real world, grasping in VR might result in intersections with virtual objects. As people are highly sensitive when it comes to perceiving collisions, it might look more appealing to avoid intersections and visualize non-colliding hand motions. However, correcting the position of the hand or fingers results in a visual-proprioceptive discrepancy and must be used with caution. Furthermore, the lack of haptic feedback in the virtual world might result in slower actions as a user might not know exactly when a grasp has occurred. This reduced performance could be remediated with adequate visual feedback. In this study, we analyze the performance, level of ownership, and user preference of eight different visual feedback techniques for virtual grasping. Three techniques show the tracked hand (with or without grasping feedback), even if it intersects with the grasped object. Another three techniques display a hand without intersections with the object, called outer hand, simulating the look of a real world interaction. One visualization is a compromise between the two groups, showing both a primary outer hand and a secondary tracked hand. Finally, in the last visualization the hand disappears during the grasping activity. In an experiment, users perform a pick-and-place task for each feedback technique. We use high fidelity marker-based hand tracking to control the virtual hands in real time. We found that the tracked hand visualizations result in better performance, however, the outer hand visualizations were preferred. We also find indications that ownership is higher with the outer hand visualizations. 
    more » « less
  2. This paper discusses the key elements of a research study that focused on training an important procedure called “Endotracheal intubation” to novice students. Such a procedure is a virtual part of treating patients who are infected with the covid-19 virus. A virtual reality environment was created to facilitate the training of novice nurses (or nurse trainees) using the HTC Vive platform. The primary interaction with the virtual objects inside this simulation-based training environment was using the hand controller. However, the small mouth of the virtual patient and the necessity of utilizing both hands to pick up the laryngoscope and endotracheal tube at the same time (during training), led to collisions involving the hand controllers and hampered the immersive experience of the participants. A multi-sensory conflict notion-based approach was proposed to address this problem. We used “Haptic retargeting” method to solve this issue. And we compared the result of the haptic retargeting method with reference condtion. Initial Results (through a questionnaire) suggest that this Haptic retargeting approach increases the participants’ sense of presence in the virtual environment. 
    more » « less
  3. Abstract

    As the metaverse expands, understanding how people use virtual reality to learn and connect is increasingly important. We used the Transformed Social Interaction paradigm (Bailenson et al., 2004) to examine different avatar identities and environments over time. In Study 1 (n = 81), entitativity, presence, enjoyment, and realism increased over 8 weeks. Avatars that resembled participants increased synchrony, similarities in moment-to-moment nonverbal behaviors between participants. Moreover, self-avatars increased self-presence and realism, but decreased enjoyment, compared to uniform avatars. In Study 2 (n = 137), participants cycled through 192 unique virtual environments. As visible space increased, so did nonverbal synchrony, perceived restorativeness, entitativity, pleasure, arousal, self- and spatial presence, enjoyment, and realism. Outdoor environments increased perceived restorativeness and enjoyment more than indoor environments. Self-presence and realism increased over time in both studies. We discuss implications of avatar appearance and environmental context on social behavior in classroom contexts over time.

     
    more » « less
  4. The goal of this research is to provide much needed empirical data on how the fidelity of popular hand gesture tracked based pointing metaphors versus commodity controller based input affects the efficiency and speed-accuracy tradeoff in users’ spatial selection in personal space interactions in VR. We conduct two experiments in which participants select spherical targets arranged in a circle in personal space, or near-field within their maximum arms reach distance, in VR. Both experiments required participants to select the targets with either a VR controller or with their dominant hand’s index finger, which was tracked with one of two popular contemporary tracking methods. In the first experiment, the targets are arranged in a flat circle in accordance with the ISO 9241-9 Fitts’ law standard, and the simulation selected random combinations of 3 target amplitudes and 3 target widths. Targets were placed centered around the users’ eye level, and the arrangement was placed at either 60%, 75%, or 90% depth plane of the users’ maximum arm’s reach. In experiment 2, the targets varied in depth randomly from one depth plane to another within the same configuration of 13 targets within a trial set, which resembled button selection task in hierarchical menus in differing depth planes in the near-field. The study was conducted using the HTC Vive head-mounted display, and used either a VR controller (HTC Vive), low-fidelity virtual pointing (Leap Motion), or a high-fidelity virtual pointing (tracked VR glove) conditions. Our results revealed that low-fidelity pointing performed worse than both high-fidelity pointing and the VR controller. Overall, target selection performance was found to be worse in depth planes closer to the maximum arms reach, as compared to middle and nearer distances. 
    more » « less
  5. Best Paper Award. When estimating the distance or size of an object in the real world, we often use our own body as a metric; this strategy is called body-based scaling. However, object size estimation in a virtual environment presented via a head-mounted display differs from the physical world due to technical limitations such as narrow field of view and low fidelity of the virtual body when compared to one's real body. In this paper, we focus on increasing the fidelity of a participant's body representation in virtual environments with a personalized hand using personalized characteristics and a visually faithful augmented virtuality approach. To investigate the impact of the personalized hand, we compared it against a generic virtual hand and measured effects on virtual body ownership, spatial presence, and object size estimation. Specifically, we asked participants to perform a perceptual matching task that was based on scaling a virtual box on a table in front of them. Our results show that the personalized hand not only increased virtual body ownership and spatial presence, but also supported participants in correctly estimating the size of a virtual object in the proximity of their hand. 
    more » « less