skip to main content


Title: Shrub expansion in the Arctic may induce large‐scale carbon losses due to changes in plant‐soil interactions
Abstract Background Tall deciduous shrubs are increasing in range, size and cover across much of the Arctic, a process commonly assumed to increase carbon (C) storage. Major advances in remote sensing have increased our ability to monitor changes aboveground, improving quantification and understanding of arctic greening. However, the vast majority of C in the Arctic is stored in soils, where changes are more uncertain. Scope We present pilot data to argue that shrub expansion will cause changes in rhizosphere processes, including the development of new mycorrhizal associations that have the potential to promote soil C losses that substantially exceed C gains in plant biomass. However, current observations are limited in their spatial extent, and mechanistic understanding is still developing. Extending measurements across different regions and tundra types would greatly increase our ability to predict the biogeochemical consequences of arctic vegetation change, and we present a simple method that would allow such data to be collected. Conclusions Shrub expansion in the Arctic could promote substantial soil C losses that are unlikely to be offset by increases in plant biomass. However, confidence in this prediction is limited by a lack of information on how soil C stocks vary between contrasting Arctic vegetation communities; this needs to be addressed urgently.  more » « less
Award ID(s):
1637459
NSF-PAR ID:
10314409
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Plant and Soil
Volume:
463
Issue:
1-2
ISSN:
0032-079X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The circumpolar expansion of woody deciduous shrubs in arctic tundra alters key ecosystem properties including carbon balance and hydrology. However, landscape‐scale patterns and drivers of shrub expansion remain poorly understood, inhibiting accurate incorporation of shrub effects into climate models. Here, we use dendroecology to elucidate the role of soil moisture in modifying the relationship between climate and growth for a dominant deciduous shrub,Salix pulchra, on the North Slope of Alaska,USA. We improve upon previous modeling approaches by using ecological theory to guide model selection for the relationship between climate and shrub growth. Finally, we present novel dendroecology‐based estimates of shrub biomass change under a future climate regime, made possible by recently developed shrub allometry models. We find thatS. pulchragrowth has responded positively to mean June temperature over the past 2.5 decades at both a dry upland tundra site and an adjacent mesic riparian site. For the upland site, including a negative second‐order term in the climate–growth model significantly improved explanatory power, matching theoretical predictions of diminishing growth returns to increasing temperature. A first‐order linear model fit best at the riparian site, indicating consistent growth increases in response to sustained warming, possibly due to lack of temperature‐induced moisture limitation in mesic habitats. These contrasting results indicate thatS. pulchrain mesic habitats may respond positively to a wider range of temperature increase thanS. pulchrain dry habitats. Lastly, we estimate that a 2°C increase in current mean June temperature will yield a 19% increase in abovegroundS. pulchrabiomass at the upland site and a 36% increase at the riparian site. Our method of biomass estimation provides an important link toward incorporating dendroecology data into coupled vegetation and climate models.

     
    more » « less
  2. Abstract. Arctic warming and permafrost degradation are modifying northernecosystems through changes in microtopography, soil water dynamics, nutrientavailability, and vegetation succession. Upon permafrost degradation, therelease of deep stores of nutrients, such as nitrogen and phosphorus, fromnewly thawed permafrost stimulates Arctic vegetation production. Morespecifically, wetter lowlands show an increase in sedges (as part ofgraminoids), whereas drier uplands favor shrub expansion. These shifts inthe composition of vegetation may influence local mineral element cyclingthrough litter production. In this study, we evaluate the influence ofpermafrost degradation on mineral element foliar stocks and potential annualfluxes upon litterfall. We measured the foliar elemental composition (Al,Ca, Fe, K, Mn, P, S, Si, and Zn) of ∼ 500 samples of typicaltundra plant species from two contrasting Alaskan tundra sites, i.e., anexperimental sedge-dominated site (Carbon in Permafrost Experimental Heating Research, CiPEHR) and natural shrub-dominated site(Gradient). The foliar concentration of these mineral elements was species specific, with sedge leaves having relatively high Si concentration andshrub leaves having relatively high Ca and Mn concentrations. Therefore,changes in the species biomass composition of the Arctic tundra in responseto permafrost thaw are expected to be the main factors that dictate changesin elemental composition of foliar stocks and maximum potential foliarfluxes upon litterfall. We observed an increase in the mineral elementfoliar stocks and potential annual litterfall fluxes, with Si increasingwith sedge expansion in wetter sites (CiPEHR), and Ca and Mn increasing withshrub expansion in drier sites (Gradient). Consequently, we expect thatsedge and shrub expansion upon permafrost thaw will lead to changes inlitter elemental composition and therefore affect nutrient cycling acrossthe sub-Arctic tundra with potential implications for further vegetationsuccession. 
    more » « less
  3. null (Ed.)
    Deciduous shrubs are expanding across the graminoid-dominated nutrient-poor arctic tundra. Absorptive root traits of shrubs are key determinants of nutrient acquisition strategy from tundra soils, but the variations of shrub root traits within and among common shrub genera across the arctic climatic gradient are not well resolved. Consequently, the impacts of arctic shrub expansion on belowground nutrient cycling remain largely unclear. Here, we collected roots from 170 plots of three commonly distributed shrub genera ( Alnus , Betula , and Salix ) and a widespread sedge ( Eriophorum vaginatum ) along a climatic gradient in northern Alaska. Absorptive root traits that are relevant to the strategy of plant nutrient acquisition were determined. The influence of aboveground dominant vegetation cover on the standing root biomass, root productivity, vertical rooting profile, as well as the soil nitrogen (N) pool in the active soil layer was examined. We found consistent root trait variation among arctic plant genera along the sampling transect. Alnus and Betula had relatively thicker and less branched, but more frequently ectomycorrhizal colonized absorptive roots than Salix , suggesting complementarity between root efficiency and ectomycorrhizal dependence among the co-existing shrubs. Shrub-dominated plots tended to have more productive absorptive roots than sedge-dominated plots. At the northern sites, deep absorptive roots (>20 cm depth) were more frequent in birch-dominated plots. We also found shrub roots extensively proliferated into the adjacent sedge-dominated plots. The soil N pool in the active layer generally decreased from south to north but did not vary among plots dominated by different shrub or sedge genera. Our results reveal diverse nutrient acquisition strategies and belowground impacts among different arctic shrubs, suggesting that further identifying the specific shrub genera in the tundra landscape will ultimately provide better predictions of belowground dynamics across the changing arctic. 
    more » « less
  4. Abstract

    Retrogressive thaw slumps (RTS)—thermal erosion of soil and vegetation after ground ice thaw—are increasing. Recovery of plant biomass after RTS is important for maintaining Arctic carbon (C) stocks and is regulated by nutrient availability for new plant growth. Many RTS are characterized by verdant shrub growth mid-succession, atypical of the surrounding nutrient-limited tundra. Here, we investigated the potential for internal and external sources of nitrogen (N) and phosphorus (P) to support mid-successional shrub growth at three Alaskan RTS chronosequences. We assessed patterns of soil and microbial CNP, soil NP cycling rates and stocks, N inputs via biological N2-fixation, and thaw leachate over time after disturbance. We found a clear transfer of P stocks from mineral to organic soils with increasing site age, yet insufficient N from any one source to support observed shrub growth. Instead, multiple mechanisms may have contributed to mid-successional shrub growth, including sustained N-cycling with reduced plant biomass, N leaching from undisturbed tundra, uninvestigated sources of N2-fixation, and most promising given the large resource, deep mineral soil N stocks. These potential mechanisms of N supply are critical for the regulation of the Arctic C cycle in response to an increasingly common climate-driven disturbance.

     
    more » « less
  5. Abstract

    Changes in vegetation distribution are underway in Arctic and boreal regions due to climate warming and associated fire disturbance. These changes have wide ranging downstream impacts—affecting wildlife habitat, nutrient cycling, climate feedbacks and fire regimes. It is thus critical to understand where these changes are occurring and what types of vegetation are affected, and to quantify the magnitude of the changes. In this study, we mapped live aboveground biomass for five common plant functional types (PFTs; deciduous shrubs, evergreen shrubs, forbs, graminoids and lichens) within Alaska and northwest Canada, every five years from 1985 to 2020. We employed a multi-scale approach, scaling from field harvest data and unmanned aerial vehicle-based biomass predictions to produce wall-to-wall maps based on climatological, topographic, phenological and Landsat spectral predictors. We found deciduous shrub and graminoid biomass were predicted best among PFTs. Our time-series analyses show increases in deciduous (37%) and evergreen shrub (7%) biomass, and decreases in graminoid (14%) and lichen (13%) biomass over a study area of approximately 500 000 km2. Fire was an important driver of recent changes in the study area, with the largest changes in biomass associated with historic fire perimeters. Decreases in lichen and graminoid biomass often corresponded with increasing shrub biomass. These findings illustrate the driving trends in vegetation change within the Arctic/boreal region. Understanding these changes and the impacts they in turn will have on Arctic and boreal ecosystems will be critical to understanding the trajectory of climate change in the region.

     
    more » « less