skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eccentric binary neutron star search prospects for Cosmic Explorer
We determine the ability of Cosmic Explorer, a proposed third-generation gravitational-wave observatory, to detect eccentric binary neutron stars and to measure their eccentricity. We find that for a matched-filter search, template banks constructed using binaries in quasicircular orbits are effectual for eccentric neutron star binaries with e<0.004 (e<0.003)is the binary’s eccentricity at a gravitational-wave frequency of 7 Hz. We show that stochastic template placement can be used to construct a matched-filter search for binaries with larger eccentricities and construct an effectual template bank for binaries with e<0.05. We show that the computational cost of both the search for binaries in quasicircular orbits and eccentric orbits is not significantly larger for Cosmic Explorer than for Advanced LIGO and is accessible with present-day computational resources. We investigate Cosmic Explorer’s ability to distinguish between circular and eccentric binaries. We estimate that for a binary with a signal-to-noise ratio of 20 (800), Cosmic Explorer can distinguish between a circular binary and a binary with eccentricity e>~1e-2 (1e-3) at 90% confidence.  more » « less
Award ID(s):
1836702
PAR ID:
10314443
Author(s) / Creator(s):
Date Published:
Journal Name:
Physical review
Volume:
104
Issue:
6
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Detections of gravitational waves emitted from binary black hole coalescences allow us to probe the strong-field dynamics of general relativity (GR). One can compare the observed gravitational-wave signals with theoretical waveform models to constrain possible deviations from GR. Any physics that is not included in these waveform models might show up as apparent GR deviations. The waveform models used in current tests of GR describe binaries on quasicircular orbits, since most of the binaries detected by ground-based gravitational-wave detectors are expected to have negligible eccentricities. Thus, a signal from an eccentric binary in GR is likely to show up as a deviation from GR in the current implementation of these tests. We study the response of four standard tests of GR to eccentric binary black hole signals with the forecast O4 sensitivity of the LIGO-Virgo network. Specifically, we consider two parametrized tests (TIGER and FTI), the modified dispersion relation test, and the inspiral-merger-ringdown consistency test. To model eccentric signals, we use nonspinning numerical relativity simulations from the SXS catalog with three mass ratios (1, 2, 3), which we scale to a redshifted total mass of 80M⊙ and luminosity distance of 400 Mpc. For each of these mass ratios, we consider signals with eccentricities of ∼0.05 and ∼0.1 at 17 Hz. We find that signals with larger eccentricity lead to very significant false GR deviations in most tests while signals having smaller eccentricity lead to significant deviations in some tests. For the larger eccentricity cases, one would even get a deviation from GR with TIGER at ∼90% credibility at a distance of ≳1.5 Gpc. Thus, it will be necessary to exclude the possibility of an eccentric binary in order to make any claim about detecting a deviation from GR. 
    more » « less
  2. Abstract The detection of orbital eccentricity for a binary black hole system via gravitational waves is a key signature to distinguish between the possible binary origins. The identification of eccentricity has been difficult so far due to the limited availability of eccentric gravitational waveforms over the full range of black hole masses and eccentricities. Here we evaluate the eccentricity of five black hole mergers detected by the LIGO and Virgo observatories using theTEOBResumS-DALI,TEOBResumS-GIOTTO, andTEOBResumSPmodels. This analysis studies eccentricities up to 0.6 at the reference frequency of 5 Hz and incorporates higher-order gravitational-wave modes critical to model emission from highly eccentric orbits. The binaries have been selected due to previous hints of eccentricity or due to their unusual mass and spin. While other studies found marginal evidence for eccentricity for some of these events, our analyses do not favor the incorporation of eccentricity compared to the quasi-circular case. While lacking the eccentric evidence of other analyses, we find our analyses marginally shifts the posterior in multiple parameters for several events when allowing eccentricity to be nonzero. 
    more » « less
  3. Abstract Despite the growing number of binary black hole coalescences confidently observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that have already been identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total source-frame massM> 70M) binaries covering eccentricities up to 0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper limit for the merger rate density of high-mass binaries with eccentricities 0 <e≤ 0.3 at 16.9 Gpc−3yr−1at the 90% confidence level. 
    more » « less
  4. null (Ed.)
    ABSTRACT Two binary neutron star mergers, GW170817 and GW190425, have been detected by Advanced LIGO and Virgo. These signals were detected by matched-filter searches that assume that the star’s orbit has circularized by the time their gravitational-wave emission is observable. This suggests that their eccentricity is low, but full parameter estimation of their eccentricity has not yet been performed. We use gravitational-wave observations to measure the eccentricity of GW170817 and GW190425. We find that the eccentricity at a gravitational-wave frequency of 10 Hz is e ≤ 0.024 and e ≤ 0.048 for GW170817 and GW190425, respectively (90 per cent confidence). This is consistent with the binaries being formed in the field, as such systems are expected to have circularized to e ≤ 10−4 by the time they reach the LIGO–Virgo band. Our constraint is a factor of 2 smaller that an estimate based on GW170817 being detected by searches that neglect eccentricity. However, we caution that we find significant prior dependence in our limits, suggesting that there is limited information in the signals. We note that other techniques used to constrain binary neutron star eccentricity without full parameter estimation may miss degeneracies in the waveform, and that for future signals, it will be important to perform full parameter estimation with accurate waveform templates. 
    more » « less
  5. Abstract Accurate modelling of black hole binaries is critical to achieve the science goals of gravitational-wave detectors. Modelling such configurations relies strongly on calibration to numerical-relativity (NR) simulations. Binaries on quasi-circular orbits have been widely explored in NR, however, coverage of the broader 9-dimensional parameter space, including orbital eccentricity, remains sparse. This article develops a new procedure to control orbital eccentricity of binary black hole simulations that enables choosing initial data parameters with precise control over eccentricity and mean anomaly of the subsequent evolution, as well as the coalescence time. We then calculate several sequences of NR simulations that nearly uniformly cover the 2-dimensional eccentricity--mean anomaly space for equal mass, non-spinning binary black holes. We demonstrate that, for fixed eccentricity, many quantities related to the merger dynamics of binary black holes show an oscillatory dependence on mean anomaly. The amplitude of these oscillations scales nearly linearly with the eccentricity of the system. We find that for the eccentricities explored in this work, the magnitude of deviations in various quantities such as the merger amplitude and peak luminosity can approach $$\sim5\%$$ of their quasi-circular value. We use our findings to explain eccentric phenomena reported in other studies. We also show that methods for estimating the remnant mass employed in the effective-one-body approach exhibit similar deviations, roughly matching the amplitude of the oscillations we find in NR simulations. This work is an important step towards a complete description of eccentric binary black hole mergers, and demonstrates the importance of considering the entire 2-dimensional parameter subspace related to eccentricity. 
    more » « less