skip to main content


Title: A distributed analysis of lateral inflows in an Alaskan Arctic watershed underlain by continuous permafrost
Abstract

Lateral inflows control the spatial distribution of river discharge, and understanding their patterns is fundamental for accurately modelling instream flows and travel time distributions necessary for evaluating impacts of climate change on aquatic habitat suitability, river energy budgets, and fate of dissolved organic carbon. Yet, little is known about the spatial distribution of lateral inflows in Arctic rivers given the lack of gauging stations. With a network of stream gauging and meteorological stations within the Kuparuk River watershed in northern Alaska, we estimated precipitation and lateral inflows for nine subcatchments from 1 July to 4 August,2013, 2014, and 2015. Total precipitation, lateral inflows, runoff ratios (area‐normalized lateral inflow divided by precipitation), percent contribution to total basin discharge, and lateral inflow per river kilometre were estimated for each watershed for relatively dry, moderate, or wet summers. The results show substantial variability between years and subcatchments. Total basin lateral inflow depths ranged 24‐fold in response to a threefold change in rainfall between dry and wet years, whereas within‐basin lateral inflows varied fivefold from the coastal plain to the foothills. General spatial trends in lateral inflows were consistent with previous studies and mean summer precipitation patterns. However, the spatially distributed nature of these estimates revealed that reaches in the vicinity of a spring‐fed surficial ice feature do not follow general spatial trends and that the coastal plain, which is typically considered to produce minimal runoff, showed potential to contribute to total river discharge. These findings are used to provide a spatially distributed understanding of lateral inflows and identify watershed characteristics that influence hydrologic responses.

 
more » « less
Award ID(s):
1637459 1936769 1753731
NSF-PAR ID:
10459723
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
34
Issue:
3
ISSN:
0885-6087
Page Range / eLocation ID:
p. 633-648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Climate change affects precipitation phase, which can propagate into changes in streamflow timing and magnitude. This study examines how the spatial and temporal distribution of rainfall and snowmelt affects discharge in rain–snow transition zones. These zones experience large year-to-year variations in precipitation phase, cover a significant area of mountain catchments globally, and might extend to higher elevations under future climate change. We used observations from 11 weather stations and snow depths measured from one aerial lidar survey to force a spatially distributed snowpack model (iSnobal/Automated Water Supply Model) in a semiarid, 1.8 km2 headwater catchment. We focused on surface water input (SWI; the summation of rainfall and snowmelt on the soil) for 4 years with contrasting climatological conditions (wet, dry, rainy, and snowy) and compared simulated SWI to measured discharge. A strong spatial agreement between snow depth from the lidar survey and model (r2 = 0.88) was observed, with a median Nash–Sutcliffe efficiency (NSE) of 0.65 for simulated and measured snow depths at snow depth stations for all modeled years (0.75 for normalized snow depths). The spatial pattern of SWI was consistent between the 4 years, with north-facing slopes producing 1.09–1.25 times more SWI than south-facing slopes, and snowdrifts producing up to 6 times more SWI than the catchment average. Annual discharge in the catchment was not significantly correlated with the fraction of precipitation falling as snow; instead, it was correlated with the magnitude of precipitation and spring snow and rain. Stream cessation depended on total and spring precipitation, as well as on the melt-out date of the snowdrifts. These results highlight the importance of the heterogeneity of SWI at the rain–snow transition zone for streamflow generation and cessation, and emphasize the need for spatially distributed modeling or monitoring of both snowpack and rainfall dynamics. 
    more » « less
  2. In the northwestern Gulf of Mexico (nwGOM), the coastal climate shifts abruptly from the humid northeast to the semiarid southwest within a narrow latitudinal range. The climate effect plays an important role in controlling freshwater discharge into the shallow estuaries in this region. In addition to diminishing freshwater runoff down the coast, evaporation also increases substantially. Hence, these estuaries show increasing salinity along the coastline due to the large difference in freshwater inflow balance (river runoff and precipitation minus evaporation and diversion). However, this spatial gradient can be disrupted by intense storm events as a copious amount of precipitation leads to river flooding, which can cause temporary freshening of these systems in extreme cases, in addition to freshwater-induced ephemeral stratification. We examined estuarine water aragonite saturation state (Ω arag ) data collected between 2014 and 2018, covering a period of contrasting hydrological conditions, from the initial drought to multiple flooding events, including a brief period that was influenced by a category 4 hurricane. Based on freshwater availability, these estuaries exhibited a diminishing Ω arag fluctuation from the most freshwater enriched Guadalupe Estuary to the most freshwater-starved Nueces Estuary. While Ω arag values were usually much higher than the threshold level (Ω arag = 1), brief freshwater discharge events and subsequent low oxygen levels in the lower water column led to episodic corrosive conditions. Based on previously obtained Ω arag temporal trends and Ω arag values obtained in this study, we estimated the time of emergence (ToE) for Ω arag . Not only did estuaries show decreasing ToE with diminishing freshwater availability but the sub-embayments of individual estuaries that had a less freshwater influence also had shorter ToE. This spatial pattern suggests that planning coastal restoration efforts, especially for shellfish organisms, should emphasize areas with longer ToE. 
    more » « less
  3. Abstract

    Lake‐based studies can provide seasonal‐ to millennial‐scale records of sediment yield to improve our understanding of catchment‐scale sediment transfer and complement shorter fluvial‐based sediment transport studies. In this study, sediment accumulation rates at 40 coring locations in Lake Peters, Brooks Range, Alaska, over ca. 42 years, calculated using fallout radionuclides and sediment density patterns, were spatially modelled based on distance from the primary inflow and lake water depth. We estimated mean interdecadal specific sediment yield (Mg km−2 year−1) using the spatially modelled sediment accumulation rates and compared that result to fluvial‐based sediment delivery for 2015–2016 open‐channel seasons, as well as to yields reported for other Arctic catchments. Using the lake‐based method, mean yield to Lake Peters between ca. 1973 and 2015 was 52 ± 12 Mg km−2 year−1, which is comparable with fluvial‐based modelling results of 33 (20–60) Mg km−2 year−1in 2015 and 79 (50–140) Mg km−2 year−1in 2016 (95% confidence intervals), respectively. Although 2016 was a year of above average sedimentation, the last extreme depositional event probably occurred between ca. 1970 and 1976 when a basal layer of fine sand was deposited in a broadly distributed, relatively thick and coarse bed, which we used for lake‐wide correlation. The dual lacustrine–fluvial method approach permits study of within‐lake and catchment‐scale processes. Within Lake Peters, sedimentation patterns show decreasing fluxes down‐lake, sediment bypassing near the primary inflow, the influence of secondary inflows and littoral redistribution, and a focusing effect in the deep proximal basin. At the watershed scale, sediment yield is largely driven by intense summer rainfall and strong seasonal hydroclimatic variability. This research informs paleo‐environmental reconstruction and environmental system modelling in Arctic lake catchments.

     
    more » « less
  4. Understanding historical trends in temperature, precipitation, and runoff is important but incomplete for developing adaptive measures to climate change to sustain fragile ecosystems in cold and arid regions, including the Balagaer River watershed on the Mongolian Plateau of northeast China. The objective of this study was to detect such trends in this watershed from 1959 to 2017. The detection was accomplished using a Mann-Kendall sudden change approach at annual and seasonal time scales. The results indicated that the abrupt changes in temperature preceded that in either runoff or precipitation; these abrupt changes occurred between 1970 and 2004. Significant (α = 0.05) warming trends were found at the minimum temperatures in spring (0.041 °C a−1), summer (0.037 °C a−1), fall (0.027 °C a−1), and winter (0.031 °C a−1). In contrast, significant decreasing trends were found in the precipitation (−1.27 mm a−1) and runoff (−0.069 mm a−1) in the summer. Marginally increasing trends were found in the precipitation in spring (0.18 mm a−1) and fall (0.032 mm a−1), whereas an insignificant decreasing trend was found in the runoffs in these two seasons. Both precipitation and runoff in the wet season exhibited a significant decreasing trend, whereas in the dry season, they exhibited a marginally increasing trend. Sudden changes in spring runoff and sudden rises in temperature are the main causes of sudden changes in basin rainfall. 
    more » « less
  5. Abstract Non-perennial rivers and streams make up over half the global river network and are becoming more widespread. Transitions from perennial to non-perennial flow are a threshold-type change that can lead to alternative stable states in aquatic ecosystems, but it is unknown whether streamflow itself is stable in either wet (flowing) or dry (no-flow) conditions. Here, we investigated drivers and feedbacks associated with regime shifts between wet and dry conditions in an intermittent reach of the Arkansas River (USA) over the past 23 years. Multiple lines of evidence suggested that these regimes represent alternative stable states, including (a) significant jumps in discharge time series that were not accompanied by jumps in flow drivers such as precipitation and groundwater pumping; (b) a multi-modal state distribution with 92% of months experiencing no-flow conditions for <10% or >90% of days, despite unimodal distributions of precipitation and pumping; and (c) a hysteretic relationship between climate and flow state. Groundwater levels appear to be the primary control over the hydrological regime, as groundwater levels in the alluvial aquifer were higher than the stream stage during wet regimes and lower than the streambed during dry regimes. Groundwater level variation, in turn, was driven by processes occurring at both the regional scale (surface water inflows from upstream, groundwater pumping) and the reach scale (stream–aquifer exchange, diffuse recharge through the soil column). Historical regime shifts were associated with diverse pressures including network disconnection caused by upstream water use, increased flow stability potentially associated with reservoir operations, and anomalous wet and dry climate conditions. In sum, stabilizing feedbacks among upstream inflows, stream–aquifer interactions, climate, vegetation, and pumping appear to create alternative wet and dry stable states at this site. These stabilizing feedbacks suggest that widespread observed shifts from perennial to non-perennial flow will be difficult to reverse. 
    more » « less