Understanding the nucleation and growth mechanisms of highentropy alloy (HEA) nanoparticles is crucial for developing functional nanocrystals with tailored properties. This study investigates the thermal decomposition of mixed metal salt precursors (Fe, Ni, Pt, Ir, Ru) on reduced graphene oxide (rGO) using in situ transmission electron microscopy (TEM) when heated to 1000 °C at both slow (20 °C min−1) and fast (103 °C s−1) heating/cooling rates. Slow heating to 1000 °C revealed the following: (1) The nanoparticles' nucleation occurred through multistage decomposition at lower temperatures (250−300 °C) than single metal salt precursors (300−450 °C). (2) Pt-dominant nanocrystals autocatalytically reduced other elements, leading to the formation of multimetallic FeNiPtIrRu nanoparticles. (3) At 1000 °C, the nanoparticles were single-phase with noble metals enriched compared to transition metals. (4) Slow cooling induced structural heterogeneity and phase segregation due to element diffusion and thermodynamic miscibility. (5) Adding polyvinylpyrrolidone (PVP) suppressed segregation, promoting HEA nanoparticle formation even during slow cooling by limiting atomic diffusion. Under fast heating/cooling, nanoparticles formed as a solid solution of fcc HEA, indicating kinetic control and limited atomic diffusion. The density function theory (DFT) calculations illustrate that the simultaneous presence of metal elements on rGO, as expected by the fast heating process, favors the formation of an fcc HEA structure, with strong interactions between HEA nanoparticles and rGO enhancing stability. This study provides insights into how heating rates and additives like PVP can control phase composition, chemical homogeneity, and stability, enabling the rational design of complex nanomaterials for catalytic, energy, and functional applications. 
                        more » 
                        « less   
                    
                            
                            Microwave synthesis of single-phase nanoparticles made of multi-principal element alloys
                        
                    
    
            Metal nanoparticles of multi-principal element alloys (MPEA) with a single crystalline phase have been synthesized by flash heating/cooling of nanosized metals encapsulated in micelle vesicles dispersed in an oil phase (e.g., cyclohexane). Flash heating is realized by selective absorption of a microwave pulse in metals to rapidly heat metals into uniform melts. The oil phase barely absorbs microwave and maintains the low temperature, which can rapidly quench the high-temperature metal melts to enable the flash cooling process. The precursor ions of four metals, including Au, Pt, Pd, and Cu, can be simultaneously reduced by hydrazine in the aqueous solution encapsulated in the micelle vesicles. The resulting metals efficiently absorb microwave energy to locally reach a temperature high enough to melt themselves into a uniform mixture. The duration of microwave pulse is crucial to ensure the reduced metals mix uniformly, while the temperature of oil phase is still low to rapidly quench the metals and freeze the single-phase crystalline lattices in alloy nanoparticles. The microwave-enabled flash heating/cooling provides a new method to synthesize single-phase MPEA nanoparticles of many metal combinations when the appropriate water-in-oil micelle systems and the appropriate reduction reactions of metal precursors are available. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1946912
- PAR ID:
- 10314590
- Date Published:
- Journal Name:
- Nano Research
- ISSN:
- 1998-0124
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)A novel approach is demonstrated for the synthesis of the high entropy transition metal boride (Ta, Mo, Hf, Zr, Ti)B2 using a single heating step enabled by microwave-induced plasma. The argon-rich plasma allows rapid boro-carbothermal reduction of a consolidated powder mixture containing the five metal oxides, blended with graphite and boron carbide (B4C) as reducing agents. For plasma exposure as low as 1800 °C for 1 h, a single-phase hexagonal AlB2-type structure forms, with an average particle size of 165 nm and with uniform distribution of the five metal cations in the microstructure. In contrast to primarily convection-based (e.g., vacuum furnace) methods that typically require a thermal reduction step followed by conversion to the single high-entropy phase at elevated temperature, the microwave approach enables rapid heating rates and reduced processing time in a single heating step. The high-entropy phase purity improves significantly with the increasing of the ball milling time of the oxide precursors from two to eight hours. However, further improvement in phase purity was not observed as a result of increasing the microwave processing temperature from 1800 to 2000 °C (for fixed ball milling time). The benefits of microwave plasma heating, in terms of allowing the combination of boro-carbothermal reduction and high entropy single-phase formation in a single heating step, are expected to accelerate progress in the field of high entropy ceramic materials.more » « less
- 
            Composite mantle xenoliths from the Cima Volcanic Field (CA, USA) contain a variety of melt (now glassy) inclusions hosted within mantle phases. The compositions and textures of these melt inclusions have the po- tential to constrain their trapping processes, melt sources, and the rates of ascent of their parent xenoliths. Here we focus on unusual spinel-hosted melt inclusions from one composite xenolith, reporting glass and daughter mineral compositions and textures and attempting to reconstruct inclusion bulk compositions. The xenolith contains spinel-hosted melt inclusions in its harzburgite, olivine-websterite and lherzolite layers; there are none in its orthopyroxenite layer. The glass compositions and reconstructed bulk compositions of the partly-crystallized inclusions correspond to alkaline intermediate melts, mostly trachyandesites. Such melts are most likely to be generated and trapped by vapor-undersaturated phlogopite or amphibole dehydration melting to an assemblage of liquid + spinel + olivine ± pyroxenes. We modeled the near-liquidus phase relations of the inclusion bulk compositions and noted the closest approach of each inclusion to simultaneous saturation with spinel and either phlogopite or amphibole, resulting in estimated trapping pressures of ~0.5–1.5 GPa and temperatures of ~1000–1100 ◦C. The large size of the hosting spinel grains suggests a slow process associated with these breakdown reactions, probably thinning of the lithosphere and steepening of the geotherm during regional extension. A linear correlation between the vesicle area and inclusion area (as proxies for volume) suggests an in-situ exsolution process from melts of relatively uniform volatile initial contents, consistent with trapping of vapor- undersaturated melts that later exsolve vapor during cooling and daughter crystal growth. A negative correla- tion between the glass content in melt inclusions and the size of the inclusion itself suggests a control on the degree of crystallinity with the size. There appears to be a two-stage cooling history captured by the inclusions, forming first prismatic daughter crystals and large round vesicles at the wall of the inclusion, followed by quenching to form a mat of fine crystallites and small vesicles in most inclusions. We connect the final quench to rapid ascent of the xenolith in its host melt, which also triggered partial breakdown of remaining amphibole to fine glassy symplectites.more » « less
- 
            The performance of a newly developed multiprincipal-element alloy (MPEA) filler metal for brazing of nickel-based superalloys was directly compared to a conventional boron- and silicon-suppressed filler (BSSF) metal. The comparison was demonstrated on an Alloy 600 substrate with a brazing temperature of 1200°C. Single-phase solidification behavior and the absence of boron and silicon in the MPEA led to a joint microstructure devoid of eutectic constituents or brittle phases in brazes employing this filler metal. In the brazes using the conventional BSSF metal, incomplete isothermal solidification and subsequent athermal solidification of the residual liquid resulted in large particles of a chromium-rich boride phase distributed throughout the microstructure. Tensile testing of brazed butt joints at both room temperature and 600°C testing conditions demonstrated that the MPEA joints exhibited total ductility values at least one order of magnitude greater than that of BSSF joints, but they showed comparable yield strengths in both testing conditions. Fractographic assessment confirmed that boride phases nucleated cracks and resulted in brittle failure in the BSSF joints, while the MPEA joints exhibited extensive ductile microvoid coalescence. Fine-scale porosity and oxide inclusions may be the dominant factors limiting the overall ductility observed in the MPEA brazes.more » « less
- 
            To understand the mechanism underlying the fast, reversible, phase transformation, information about the atomic structure and defects structures in phase change materials class is key. PCMs are investigated for many applications. These devices are chalcogenide based and use self heating to quickly switch between amorphous and crystalline phases, generating orders of magnitude differences in the electrical resistivity. The main challenges with PCMs have been the large power required to heat above crystallization or melting (for melt-quench amorphization) temperatures and limited reliability due to factors such as resistance drifts of the metastable phases, void formation and elemental segregation upon cycling. Characterization of devices and their unique switching behavior result in distinct material properties affected by the atomic arrangement in the respective phase. TEM is used to study the atomic structure of the metastable crystalline phase. The aim is to correlate the microstructure with results from electrical characterization, building on R vs T measurements on various thicknesses GST thin films. To monitor phase changes in real-time as a function of temperature, thin films are deposited directly onto Protochips carriers. The Protochips heating holders provides controlled temperature changes while imaging in the TEM. These studies can provide insights into how changes occur in the various phase transformations even though the rate of temperature change is much slower than the PCM device operation. Other critical processes such as void formation, grain evolution and the cause of resistance drift can thereby be related to changes in structure and chemistry. Materials characterization is performed using Tecnai F30 and Titan ETEM microscopes, operating at 300kV. Both the microscopes can accept the same Protochips heating holders. The K2 direct electron detector camera equipped with the ETEM allows high-speed video recording (1600 f/s) of structural changes occurring in these materials upon heating and cooling. In this presentation, we will describe the effect of heating thin films of different thickness and composition, the changes in crystallinity and grain size, and how these changes correlate with changes in the electrical properties of the films. We will emphasize that it is always important to use low-dose and/or beam blanking techniques to distinguish changes induced by the beam from those due to the heating or introduction of an electric current.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    