skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: "Good Robot! Now Watch This!": Repurposing Reinforcement Learning for Task-to-Task Transfer
Modern Reinforcement Learning (RL) algorithms are not sample efficient to train on multi-step tasks in complex domains, impeding their wider deployment in the real world. We address this problem by leveraging the insight that RL models trained to complete one set of tasks can be repurposed to complete related tasks when given just a handful of demonstrations. Based upon this insight, we propose See-SPOT-Run (SSR), a new computational approach to robot learning that enables a robot to complete a variety of real robot tasks in novel problem domains without task-specific training. SSR uses pretrained RL models to create vectors that represent model, task, and action relevance in demonstration and test scenes. SSR then compares these vectors via our Cycle Consistency Distance (CCD) metric to determine the next action to take. SSR completes 58% more task steps and 20% more trials than a baseline few-shot learning method that requires task-specific training. SSR also achieves a four order of magnitude improvement in compute efficiency and a 20% to three order of magnitude improvement in sample efficiency compared to the baseline and to training RL models from scratch. To our knowledge, we are the first to address multi-step tasks from demonstration on a real robot without task-specific training, where both the visual input and action space output are high dimensional. Code is available in the supplement.  more » « less
Award ID(s):
1763705
PAR ID:
10314687
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Aleksandra Faust, David Hsu
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
164
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the potential of reinforcement learning (RL) for building general-purpose robotic systems, training RL agents to solve robotics tasks still remains challenging due to the difficulty of exploration in purely continuous action spaces. Addressing this problem is an active area of research with the majority of focus on improving RL methods via better optimization or more efficient exploration. An alternate but important component to consider improving is the interface of the RL algorithm with the robot. In this work, we manually specify a library of robot action primitives (RAPS), parameterized with arguments that are learned by an RL policy. These parameterized primitives are expressive, simple to implement, enable efficient exploration and can be transferred across robots, tasks and environments. We perform a thorough empirical study across challenging tasks in three distinct domains with image input and a sparse terminal reward. We find that our simple change to the action interface substantially improves both the learning efficiency and task performance irrespective of the underlying RL algorithm, significantly outperforming prior methods which learn skills from offline expert data. Code and videos at https://mihdalal.github.io/raps/ 
    more » « less
  2. Representation Learning), a novel multimodal meta-learning framework for few-shot learning in heterogeneous systems, designed for science and engineering problems where entities share a common underlying forward model but exhibit heterogeneity due to entity-specific characteristics. TAM-RL leverages an amortized training process with a modulation network and a base network to learn task-specific modulation parameters, enabling efficient adaptation to new tasks with limited data. We evaluate TAM-RL on two real-world environmental datasets: Gross Primary Product (GPP) prediction and streamflow forecasting, demonstrating significant improvements over existing meta-learning methods. On the FLUXNET dataset, TAM-RL improves RMSE by 18.9% over MMAML with just one month of few-shot data, while for streamflow prediction, it achieves an 8.21% improvement with one year of data. Synthetic data experiments further validate TAM-RL’s superior performance in heterogeneous task distributions, outperforming the baselines in the most heterogeneous setting. Notably, TAM-RL offers substantial computational efficiency, with at least 3x faster training times compared to gradient-based meta-learning approaches while being much simpler to train due to reduced complexity. Ablation studies highlight the importance of pretraining and adaptation mechanisms in TAM-RL’s performance. Keywords: Representation Learning, meta-learning, few-shot learning, environmental applications, time-series. DOI:10.1137/1.9781611978520.2 
    more » « less
  3. Tan, Jie; Toussaint, Marc (Ed.)
    With the advent of large language models and large-scale robotic datasets, there has been tremendous progress in high-level decision-making for object manipulation [1, 2, 3, 4]. These generic models are able to interpret complex tasks using language commands, but they often have difficulties generalizing to out-of-distribution objects due to the inability of low-level action primitives. In contrast, existing task-specific models [5, 6] excel in low-level manipulation of unknown objects, but only work for a single type of action. To bridge this gap, we present M2T2, a single model that supplies different types of low-level actions that work robustly on arbitrary objects in cluttered scenes. M2T2 is a transformer model which reasons about contact points and predicts valid gripper poses for different action modes given a raw point cloud of the scene. Trained on a large-scale synthetic dataset with 128K scenes, M2T2 achieves zero-shot sim2real transfer on the real robot, outperforming the baseline system with state- of-the-art task-specific models by about 19% in overall performance and 37.5% in challenging scenes where the object needs to be re-oriented for collision- free placement. M2T2 also achieves state-of-the-art results on a subset of language conditioned tasks in RLBench [7]. Videos of robot experiments on unseen objects in both real world and simulation are available on our project website https://m2-t2.github.io. 
    more » « less
  4. Learning from Demonstration (LfD) is a promising approach to enable Multi-Robot Systems (MRS) to acquire complex skills and behaviors. However, the intricate interactions and coordination challenges in MRS pose significant hurdles for effective LfD. In this paper, we present a novel LfD framework specifically designed for MRS, which leverages visual demonstrations to capture and learn from robot-robot and robot-object interactions. Our framework introduces the concept of Interaction Keypoints (IKs) to transform the visual demonstrations into a representation that facilitates the inference of various skills necessary for the task. The robots then execute the task using sensorimotor actions and reinforcement learning (RL) policies when required. A key feature of our approach is the ability to handle unseen contact-based skills that emerge during the demonstration. In such cases, RL is employed to learn the skill using a classifier-based reward function, eliminating the need for manual reward engineering and ensuring adaptability to environmental changes. We evaluate our framework across a range of mobile robot tasks, covering both behavior-based and contact-based domains. The results demonstrate the effectiveness of our approach in enabling robots to learn complex multi-robot tasks and behaviors from visual demonstrations. 
    more » « less
  5. Over the past decade, deep reinforcement learning (RL) techniques have significantly advanced robotic systems. However, due to the complex architectures of neural network models, ensuring their trustworthiness is a considerable challenge. Programmatic reinforcement learning has surfaced as a promising approach. Nonetheless, synthesizing robot-control programs remains challenging. Existing methods rely on domain-specific languages (DSLs) populated with user-defined state abstraction predicates and a library of low-level controllers as abstract actions to boot synthesis, which is impractical in unknown environments that lack such predefined components. To address this limitation, we introduce RoboScribe, a novel abstraction refinement-guided program synthesis framework that automatically derives robot state and action abstractions from raw, unsegmented task demonstrations in high-dimensional, continuous spaces. It iteratively enriches and refines an initially coarse abstraction until it generates a task-solving program over the abstracted robot environment. RoboScribe is effective in synthesizing iterative programs by inferring recurring subroutines directly from the robot’s raw, continuous state and action spaces, without needing predefined abstractions. Experimental results show that RoboScribe programs inductively generalize to long-horizon robot tasks involving arbitrary numbers of objects, outperforming baseline methods in terms of both interpretability and efficiency. 
    more » « less