skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Conserved Structural Role for the Walker-A Lysine in P-Loop Containing Kinases
Bacterial tyrosine kinases (BY-kinases) and shikimate kinases (SKs) comprise two structurally divergent P-loop containing enzyme families that share similar catalytic site geometries, most notably with respect to their Walker-A, Walker-B, and DxD motifs. We had previously demonstrated that in BY-kinases, a specific interaction between the Walker-A and Walker-B motifs, driven by the conserved “catalytic” lysine housed on the former, leads to a conformation that is unable to efficiently coordinate Mg 2+ •ATP and is therefore incapable of chemistry. Here, using enhanced sampling molecular dynamics simulations, we demonstrate that structurally similar interactions between the Walker-A and Walker-B motifs, also mediated by the catalytic lysine, stabilize a state in SKs that deviates significantly from one that is necessary for the optimal coordination of Mg 2+ •ATP. This structural role of the Walker-A lysine is a general feature in SKs and is found to be present in members that encode a Walker-B sequence characteristic of the family ( Coxiella burnetii SK), and in those that do not ( Mycobacterium tuberculosis SK). Thus, the structural role of the Walker-A lysine in stabilizing an inactive state, distinct from its catalytic function, is conserved between two distantly related P-loop containing kinase families, the SKs and the BY-kinases. The universal conservation of this element, and of the key characteristics of its associated interaction partners within the Walker motifs of P-loop containing enzymes, suggests that this structural role of the Walker-A lysine is perhaps a widely deployed regulatory mechanism within this ancient family.  more » « less
Award ID(s):
1811770 1937937
PAR ID:
10314997
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Molecular Biosciences
Volume:
8
ISSN:
2296-889X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BY-kinases constitute a protein tyrosine kinase family that encodes unique catalytic domains that deviate from those of eukaryotic kinases resembling P-loop nucleotide triphosphatases (NTPases) instead. We have used computational and supporting biochemical approaches using the catalytic domain of the Escherichia coli BY-kinase, Wzc, to illustrate mechanistic divergences between BY-kinases and NTPases despite their deployment of similar catalytic motifs. In NTPases, the “arginine finger” drives the reactive conformation of ATP while also displacing its solvation shell, thereby making favorable enthalpic and entropic contributions toward βγ-bond cleavage. In BY-kinases, the reactive state of ATP is enabled by ATP·Mg 2+ -induced global conformational transitions coupled to the conformation of the Walker-A lysine. While the BY-kinase arginine finger does promote the desolvation of ATP, it does so indirectly by generating an ordered active site in combination with other structural elements. Bacteria, using these mechanistic variations, have thus repurposed an ancient fold to phosphorylate on tyrosine. 
    more » « less
  2. null (Ed.)
    BY-kinases represent a highly conserved family of protein tyrosine kinases unique to bacteria without eukaryotic orthologs. BY-kinases are regulated by oligomerization-enabled transphosphorylation on a C-terminal tyrosine cluster through a process with sparse mechanistic detail. Using the catalytic domain (CD) of the archetypal BY-kinase, Escherichia coli Wzc, and enhanced-sampling molecular dynamics simulations, isothermal titration calorimetry and nuclear magnetic resonance measurements, we propose a mechanism for its activation and nucleotide exchange. We find that the monomeric Wzc CD preferentially populates states characterized by distortions at its oligomerization interfaces and by catalytic element conformations that allow high-affinity interactions with ADP but not with ATP·Mg 2+ . We propose that oligomer formation stabilizes the intermonomer interfaces and results in catalytic element conformations suitable for optimally engaging ATP·Mg 2+ , facilitating exchange with bound ADP. This sequence of events, oligomerization, i.e., substrate binding, before engaging ATP·Mg 2+ , facilitates optimal autophosphorylation by preventing a futile cycle of ATP hydrolysis. 
    more » « less
  3. Bacterial tyrosine kinases (BY-kinases) comprise a family of protein tyrosine kinases that are structurally distinct from their functional counterparts in eukaryotes and are highly conserved across the bacterial kingdom. BY-kinases act in concert with their counteracting phosphatases to regulate a variety of cellular processes, most notably the synthesis and export of polysaccharides involved in biofilm and capsule biogenesis. Biochemical data suggest that BY-kinase function involves the cyclic assembly and disassembly of oligomeric states coupled to the overall phosphorylation levels of a C-terminal tyrosine cluster. This process is driven by the opposing effects of intermolecular autophosphorylation, and dephosphorylation catalyzed by tyrosine phosphatases. In the absence of structural insight into the interactions between a BY-kinase and its phosphatase partner in atomic detail, the precise mechanism of this regulatory process has remained poorly defined. To address this gap in knowledge, we have determined the structure of the transiently assembled complex between the catalytic core of the Escherichia coli (K-12) BY-kinase Wzc and its counteracting low–molecular weight protein tyrosine phosphatase (LMW-PTP) Wzb using solution NMR techniques. Unambiguous distance restraints from paramagnetic relaxation effects were supplemented with ambiguous interaction restraints from static spectral perturbations and transient chemical shift changes inferred from relaxation dispersion measurements and used in a computational docking protocol for structure determination. This structure presents an atomic picture of the mode of interaction between an LMW-PTP and its BY-kinase substrate, and provides mechanistic insight into the phosphorylation-coupled assembly/disassembly process proposed to drive BY-kinase function. 
    more » « less
  4. In eukaryotic organisms, protein kinases regulate diverse protein activities and signaling pathways through phosphorylation of specific protein substrates. Isolating and characterizing kinase substrates is vital for defining downstream signaling pathways. The Kinase Client (KiC) assay is an in vitro synthetic peptide LC-MS/MS phosphorylation assay that has enabled identification of protein substrates (i.e., clients) for various protein kinases. For example, previous use of a 2,100-member (2k) peptide library identified substrates for the extracellular ATP receptor-like kinase, P2K1. Many P2K1 clients were confirmed by additional in vitro and in planta studies, including Integrin-Linked Kinase 4 (ILK4), for which we provide the evidence herein. In addition, we developed a new KiC peptide library containing 8,000 (8k) peptides based on phosphorylation sites primarily from Arabidopsis thaliana datasets. The 8k peptides are enriched for sites with conservation in other angiosperm plants, with the paired goals of representing functionally conserved sites and usefulness for screening kinases from diverse plants. Screening the 8k library with the active P2K1 kinase domain identified 177 phosphopeptides, including calcineurin B-like protein (CBL9) and G protein alpha subunit 1 (GPA1), which functions in cellular calcium signaling. We confirmed that P2K1 directly phosphorylates CBL9 and GPA1 through in vitro kinase assays. This expanded 8k KiC assay will be a useful tool for identifying novel substrates across diverse plant protein kinases, ultimately facilitating the exploration of previously undiscovered signaling pathways. 
    more » « less
  5. Apicomplexan parasites replicate within a protective organelle, called the parasitophorous vacuole (PV). TheToxoplasma gondiiPV is filled with a network of tubulated membranes, which are thought to facilitate trafficking of effectors and nutrients. Despite being critical to parasite virulence, there is scant mechanistic understanding of the network’s functions. Here, we identify the parasite-secreted kinase WNG1 (With-No-Gly-loop) as a critical regulator of tubular membrane biogenesis. WNG1 family members adopt an atypical protein kinase fold lacking the glycine rich ATP-binding loop that is required for catalysis in canonical kinases. Unexpectedly, we find that WNG1 is an active protein kinase that localizes to the PV lumen and phosphorylates PV-resident proteins, several of which are essential for the formation of a functional intravacuolar network. Moreover, we show that WNG1-dependent phosphorylation of these proteins is required for their membrane association, and thus their ability to tubulate membranes. Consequently, WNG1 knockout parasites have an aberrant PV membrane ultrastructure. Collectively, our results describe a unique family ofToxoplasmakinases and implicate phosphorylation of secreted proteins as a mechanism of regulating PV development during parasite infection. 
    more » « less