skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Gopher’s Gambit: Survival Advantages of Artifact-based Intention Perception [The Gopher’s Gambit: Survival Advantages of Artifact-based Intention Perception]
Being able to assess and calculate risks can positively impact an agent’s chances of survival. When other intelligent agents alter environments to create traps, the ability to detect such intended traps (and avoid them) could be life-saving. We investigate whether there are cases for which an agent’s ability to perceive intention through the assessment of environmental artifacts provides a measurable survival advantage. Our agents are virtual gophers assessing a series of room-like environments, which are potentially dangerous traps intended to harm them. Using statistical hypothesis tests based on configuration coherence, the gophers differentiate between designed traps and configurations that are randomly generated and most likely safe, allowing them access to the food contained within them. We find that gophers possessing the ability to perceive intention have significantly better survival outcomes than those without intention perception in most of the cases evaluated.  more » « less
Award ID(s):
1950885
PAR ID:
10315004
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 13th International Conference on Agents and Artificial Intelligence
Volume:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Conjecturing that an agent's ability to perceive the intentions of others can increase its chances of survival, we introduce a simple game, the Hero's Dilemma, which simulates interactions between two virtual agents to investigate whether an agent's ability to detect the intentional stance of a second agent provides a measurable survival advantage. We test whether agents able to make decisions based on the perceived intention of an adversarial agent have advantages over agents without such perception, but who instead rely on a variety of different game-playing strategies. In the game, an agent must decide whether to remain hidden or attack an often more powerful agent based on the perceived intention of the other agent. We compare the survival rates of agents with and without intention perception, and find that intention perception provides significant survival advantages and is the most successful strategy in the majority of situations tested. 
    more » « less
  2. We evaluate the benefits of intention perception, the ability of an agent to perceive the intentions and plans of others, in improving a software agent's survival likelihood in a simulated virtual environment. To model intention perception, we set up a multi-agent predator and prey model, where the prey agents search for food and the predator agents seek to eat the prey. We then analyze the difference in average survival rates between prey with intention perception-knowledge of which predators are targeting them-and those without. We find that intention perception provides significant survival advantages in almost all cases tested, agreeing with other recent studies investigating intention perception in adversarial situations and environmental danger assessment. 
    more » « less
  3. Rocha, A.P.; Steels, L.; van den Herik, J. (Ed.)
    Previous work has shown that artificial agents with the ability to discern function from structure (intention perception) in simple combinatorial machines possess a survival advantage over those that cannot. We seek to examine the strength of the relationship between structure and function in these cases. To do so, we use genetic algorithms to generate simple combinatorial machines (in this case, traps for artificial gophers). Specifically, we generate traps both with and without structure and function, and examine the correlation between trap coherence and lethality, the capacity of genetic algorithms to generate lethal and coherent traps, and the information resources necessary for genetic algorithms to create traps with specified traits. We then use the traps generated by the genetic algorithms to see if artificial agents with intention perception still possess a survival advantage over those that do not. Our findings are two-fold. First, we find that coherence (structure) is much harder to achieve than lethality (function) and that optimizing for one does not beget the other. Second, we find that agents with intention perception do not possess strong survival advantages when faced with traps generated by a genetic algorithm. 
    more » « less
  4. Does structure dictate function and can function be reliably inferred from structure? Previous work has shown that an artificial agent’s ability to detect function (e.g., lethality) from structure (e.g., the coherence of traps) can confer measurable survival advantages. We explore the link between structure and function in simple combinatorial machines, using genetic algorithms to generate traps with structure (coherence) and no function (no lethality), generate traps with function and no structure, and generate traps with both structure and function. We explore the characteristics of the algorithmically generated traps, examine the genetic algorithms’ ability to produce structure, function, and their combination, and investigate what resources are needed for the genetic algorithms to reliably succeed at these tasks. We find that producing lethality (function) is easier than producing coherence (structure) and that optimizing for one does not reliably produce the other. 
    more » « less
  5. null (Ed.)
    Abstract Habitat alteration can influence suitability, creating ecological traps where habitat preference and fitness are mismatched. Despite their importance, ecological traps are notoriously difficult to identify and their impact on host–pathogen dynamics remains largely unexplored. Here we assess individual bat survival and habitat preferences in the midwestern United States before, during, and after the invasion of the fungal pathogen that causes white-nose syndrome. Despite strong selection pressures, most hosts continued to select habitats where disease severity was highest and survival was lowest, causing continued population declines. However, some individuals used refugia where survival was higher. Over time, a higher proportion of the total population used refugia than before pathogen arrival. Our results demonstrate that host preferences for habitats with high disease-induced mortality can create ecological traps that threaten populations, even in the presence of accessible refugia. 
    more » « less