TESS as a Low-surface-brightness Observatory: Cutouts from Wide-area Coadded Images
Abstract We present a mosaic of those co-added Full Frame Images acquired by the TESS satellite that had been released in 2020 April. The mosaic shows substantial stray light over the sky. Yet over spatial scales of a few degrees, the background appears uniform. This result indicates that TESS has considerable potential as a Low Surface Brightness Observatory. The co-added images are freely available as a High Level Science Product (HLSP) at MAST and accessible through a Jupyter Notebook.
more »
« less
- Award ID(s):
- 1835379
- PAR ID:
- 10315094
- Date Published:
- Journal Name:
- Research Notes of the AAS
- Volume:
- 5
- Issue:
- 7
- ISSN:
- 2515-5172
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We introduce Mosaic, a sparse tensor algebra compiler that can bind tensor expressions to external functions of other tensor algebra libraries and compilers. Users can extend Mosaic by adding new functions and bind a sub-expression to a function using a scheduling API. Mosaic substitutes the bound sub-expressions with calls to the external functions and automatically generates the remaining code using a default code generator. As the generated code is fused by default, users can productively leverage both fusion and calls to specialized functions within the same compiler. We demonstrate the benefits of our dual approach by showing that calling hand-written CPU and specialized hardware functions can provide speedups of up to 206× against fused code in some cases, while generating fused code can provide speedups of up to 3.57× against code that calls external functions in other cases. Mosaic also offers a search system that can automatically map an expression to a set of registered external functions. Both the explicit binding and automatic search are verified by Mosaic. Additionally, the interface for adding new external functions is simple and general. Currently, 38 external functions have been added to Mosaic, with each addition averaging 20 lines of code.more » « less
-
Abstract 3I/ATLAS is the third macroscopic interstellar object detected traversing the solar system. Since its initial discovery on UT 2025 July 1, hundreds of hours on a range of observational facilities have been dedicated to measuring the physical properties of this object. These observations have provided astrometry to refine the orbital solution, photometry to measure the color, a rotation period and secular light curve, and spectroscopy to characterize the composition of the coma. Here, we report precovery photometry of 3I/ATLAS as observed with NASA’s Transiting Exoplanet Survey Satellite (TESS). 3I/ATLAS was observed nearly continuously by TESS from UT 2025 May 7 to 2025 June 2. We use the shift-stack method to create deepstack images to recover the object. These composite images reveal that 3I/ATLAS has an average TESS magnitude ofTmag = 20.83 ± 0.05, 19.28 ± 0.05 and an absolute visual magnitude ofHV = 13.72 ± 0.35;12.52 ± 0.35, the latter being consistent with magnitudes reported in 2025 July. When coupled with recent Hubble Space Telescope images deriving a nucleus size ofR< 2.8 km (H> 15.4), our measurements suggest that 3I/ATLAS may have been active out at ∼6 au. Additionally, we extract a ∼20 day light curve and find no statistically significant evidence of a nucleus rotation period. Nevertheless, the data presented here are some of the earliest precovery images of 3I/ATLAS and may be used in conjunction with future observations to constrain the properties of our third interstellar interloper.more » « less
An official website of the United States government

