skip to main content


Title: Impact of Immersive Training on Senior Chemical Engineering Students' Prioritization of Process Safety Decision Criteria
Process safety is becoming a greater focus of chemical plant design and operation due to the number of incidents involving dangerous chemical accidents. Since its creation nearly 20 years ago, the Chemical Safety Board (CSB) has investigated 130 safety incidents and provided over 800 safety recommendations to operating chemical facilities. Following a gas well blowout in 2018, the CSB gave a recommendation to the American Petroleum Institute (API) to establish recommended practice on alarm management. Similarly, in 2017, the CSB gave a recommendation to Arkema Inc. to update their emergency response training following a hurricane that caused a fire at one of their manufacturing sites. Many times, CSB-led investigations resulted in new regulations and standards that are enforced by the Occupational Safety and Health Administration (OSHA) or the Environmental Protection Agency (EPA). These critical recommendations positively impact not only the plant workers but also the surrounding community and the environment. While these safety measures enhance industrial safety culture, it is important that process safety also be integrated into university-level engineering curricula to promote safety culture while future engineers are still developing. Integrating process safety into the curriculum prepares students by familiarizing them with the difficult decisions they will be required to make in professional practice. ABET, the engineering program accreditation body, acknowledges the value of early, appropriate training within their program guidelines “Criteria for Chemical Engineering Curriculum” which states that recognition and assessment of the hazards associated with chemical processes must be included in the curriculum for program accreditation. Based on this requirement, many institutions have taken the approach to integrate process safety into their curriculum using video case studies, adding entire courses to cover hazard identification, and including safety lectures in design courses. A common theme missing from these methods is instruction on how to approach, recognize, and navigate decisions within a process safety context; a lack of this situational awareness was noted as a key element in industrial process safety incidents. Understanding how students approach process safety decisions is important for developing teaching methods and curriculum that will better prepare them for professional practice. As part of this study, we will measure how students rank criteria associated with process safety decisions, and how these prioritizations change after exposure to a process safety decision making intervention. Through this work, we hope to determine how process safety curriculum may be improved to help better prepare students for process safety decisions within industry.  more » « less
Award ID(s):
1711644
NSF-PAR ID:
10315117
Author(s) / Creator(s):
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Process safety is at the heart of operation of many chemical processing companies. However, the Chemical Safety Board (CSB) has still documented over 800 investigations of process safety failures since the year 2000. While not all of these incidents were severe, some did lead to employee injuries or death and environmental harm. As a result, chemical engineering companies are increasingly dedicated to process safety through training programs and detailed vigilance as part of their operations practice. AIChE and OSHA also offer courses in process safety to help support the industry. These efforts illustrate the paramount importance that chemical engineering graduates have an appreciation and understanding of process safety as they transition from their degree program into industrial positions. Previous studies have shown that despite difficulties due to course load constraints, process safety has been incorporated into chemical engineering curriculum through either the addition of new courses, incorporation of the content within existing classes, or a combination of the two methods. A review performed in Process Safety Progress suggested that a key step for departments moving forward is to perform an assessment of the process safety culture within their institution in order to determine how faculty and students view process safety. An issue with completing this task is the lack of assessment tools that can be used to determine how students are developing their understanding of process safety decision making. This observation led to the development of the Engineering Process Safety Research Instrument (EPSRI). This instrument is modeled after the Defining Issues Test version 2 (DIT2) and the Engineering Ethical Reasoning Instrument (EERI). Similar to these instruments, the EPSRI provides dilemmas, three decisions, and 12 additional considerations that individuals must rate based on their relative importance to their decision making process. The dilemmas developed in the EPSRI are based on case studies and investigations from process safety failures that have occurred in industry to provide a realistic context for the decision making decisions that engineers may be faced with upon employment. The considerations provided after the scenario are derived to reflect pre-conventional, conventional, and post-conventional decision making thinking as described by Kohlberg’s Moral Development Theory. Pre-conventional decision making thinking focuses particularly on what is right/wrong or good/bad from an individual level, whereas post-conventional thinking seeks to determine what is correct from moral and value perspectives at the society level. This WIP paper describes the content validity study conducted while developing the EPSRI. Dilemmas were examined by context experts including professionals in the process industry, chemical engineering departments, and learning sciences field. Content experts reviewed the dilemmas and determined whether they represented accurate examples of process safety decision making that individuals may face in real-world engineering settings. The experts also reviewed the 12 considerations for each dilemma for their accuracy in capturing pre-conventional, conventional and post-conventional thinking. This work represents the first step in the overall instrument validation that will take place over the next academic year. 
    more » « less
  2. Process safety is at the heart of operation of many chemical processing companies. However, the Chemical Safety Board (CSB) has still documented over 800 investigations of process safety failures since the year 2000. While not all of these incidents were severe, some did lead to employee injuries or death and environmental harm. As a result, chemical engineering companies are increasingly dedicated to process safety through training programs and detailed vigilance as part of their operations practice. AIChE and OSHA also offer courses in process safety to help support the industry. These efforts illustrate the paramount importance that chemical engineering graduates have an appreciation and understanding of process safety as they transition from their degree program into industrial positions. Previous studies have shown that despite difficulties due to course load constraints, process safety has been incorporated into chemical engineering curriculum through either the addition of new courses, incorporation of the content within existing classes, or a combination of the two methods. A review performed in Process Safety Progress suggested that a key step for departments moving forward is to perform an assessment of the process safety culture within their institution in order to determine how faculty and students view process safety. An issue with completing this task is the lack of assessment tools that can be used to determine how students are developing their understanding of process safety decision making. This observation led to the development of the Engineering Process Safety Research Instrument (EPSRI). This instrument is modeled after the Defining Issues Test version 2 (DIT2) and the Engineering Ethical Reasoning Instrument (EERI). Similar to these instruments, the EPSRI provides dilemmas, three decisions, and 12 additional considerations that individuals must rate based on their relative importance to their decision making process. The dilemmas developed in the EPSRI are based on case studies and investigations from process safety failures that have occurred in industry to provide a realistic context for the decision making decisions that engineers may be faced with upon employment. The considerations provided after the scenario are derived to reflect pre-conventional, conventional, and post-conventional decision making thinking as described by Kohlberg’s Moral Development Theory. Pre-conventional decision making thinking focuses particularly on what is right/wrong or good/bad from an individual level, whereas post-conventional thinking seeks to determine what is correct from moral and value perspectives at the society level. This WIP paper describes the content validity study conducted while developing the EPSRI. Dilemmas were examined by context experts including professionals in the process industry, chemical engineering departments, and learning sciences field. Content experts reviewed the dilemmas and determined whether they represented accurate examples of process safety decision making that individuals may face in real-world engineering settings. The experts also reviewed the 12 considerations for each dilemma for their accuracy in capturing pre-conventional, conventional and post-conventional thinking. This work represents the first step in the overall instrument validation that will take place over the next academic year. 
    more » « less
  3. Process safety is at the heart of operation of many chemical processing companies. However, the Chemical Safety Board (CSB) has still documented over 800 investigations of process safety failures since the year 2000. While not all of these incidents were severe, some did lead to employee injuries or death and environmental harm. As a result, chemical engineering companies are increasingly dedicated to process safety through training programs and detailed vigilance as part of their operations practice. AIChE and OSHA also offer courses in process safety to help support the industry. These efforts illustrate the paramount importance that chemical engineering graduates have an appreciation and understanding of process safety as they transition from their degree program into industrial positions. Previous studies have shown that despite difficulties due to course load constraints, process safety has been incorporated into chemical engineering curriculum through either the addition of new courses, incorporation of the content within existing classes, or a combination of the two methods. A review performed in Process Safety Progress suggested that a key step for departments moving forward is to perform an assessment of the process safety culture within their institution in order to determine how faculty and students view process safety. An issue with completing this task is the lack of assessment tools that can be used to determine how students are developing their understanding of process safety decision making. This observation led to the development of the Engineering Process Safety Research Instrument (EPSRI). This instrument is modeled after the Defining Issues Test version 2 (DIT2) and the Engineering Ethical Reasoning Instrument (EERI). Similar to these instruments, the EPSRI provides dilemmas, three decisions, and 12 additional considerations that individuals must rate based on their relative importance to their decision making process. The dilemmas developed in the EPSRI are based on case studies and investigations from process safety failures that have occurred in industry to provide a realistic context for the decision making decisions that engineers may be faced with upon employment. The considerations provided after the scenario are derived to reflect pre-conventional, conventional, and post-conventional decision making thinking as described by Kohlberg’s Moral Development Theory. Pre-conventional decision making thinking focuses particularly on what is right/wrong or good/bad from an individual level, whereas post-conventional thinking seeks to determine what is correct from moral and value perspectives at the society level. This WIP paper describes the content validity study conducted while developing the EPSRI. Dilemmas were examined by context experts including professionals in the process industry, chemical engineering departments, and learning sciences field. Content experts reviewed the dilemmas and determined whether they represented accurate examples of process safety decision making that individuals may face in real-world engineering settings. The experts also reviewed the 12 considerations for each dilemma for their accuracy in capturing pre-conventional, conventional and post-conventional thinking. This work represents the first step in the overall instrument validation that will take place over the next academic year. 
    more » « less
  4. Process safety is at the heart of operation of many chemical processing companies. However, the Chemical Safety Board (CSB) has still documented over 800 investigations of process safety failures since the year 2000. While not all of these incidents were severe, some did lead to employee injuries or death and environmental harm. As a result, chemical engineering companies are increasingly dedicated to process safety through training programs and detailed vigilance as part of their operations practice. AIChE and OSHA also offer courses in process safety to help support the industry. These efforts illustrate the paramount importance that chemical engineering graduates have an appreciation and understanding of process safety as they transition from their degree program into industrial positions. Previous studies have shown that despite difficulties due to course load constraints, process safety has been incorporated into chemical engineering curriculum through either the addition of new courses, incorporation of the content within existing classes, or a combination of the two methods. A review performed in Process Safety Progress suggested that a key step for departments moving forward is to perform an assessment of the process safety culture within their institution in order to determine how faculty and students view process safety. An issue with completing this task is the lack of assessment tools that can be used to determine how students are developing their understanding of process safety decision making. This observation led to the development of the Engineering Process Safety Research Instrument (EPSRI). This instrument is modeled after the Defining Issues Test version 2 (DIT2) and the Engineering Ethical Reasoning Instrument (EERI). Similar to these instruments, the EPSRI provides dilemmas, three decisions, and 12 additional considerations that individuals must rate based on their relative importance to their decision making process. The dilemmas developed in the EPSRI are based on case studies and investigations from process safety failures that have occurred in industry to provide a realistic context for the decision making decisions that engineers may be faced with upon employment. The considerations provided after the scenario are derived to reflect pre-conventional, conventional, and post-conventional decision making thinking as described by Kohlberg’s Moral Development Theory. Pre-conventional decision making thinking focuses particularly on what is right/wrong or good/bad from an individual level, whereas post-conventional thinking seeks to determine what is correct from moral and value perspectives at the society level. This WIP paper describes the content validity study conducted while developing the EPSRI. Dilemmas were examined by context experts including professionals in the process industry, chemical engineering departments, and learning sciences field. Content experts reviewed the dilemmas and determined whether they represented accurate examples of process safety decision making that individuals may face in real-world engineering settings. The experts also reviewed the 12 considerations for each dilemma for their accuracy in capturing pre-conventional, conventional and post-conventional thinking. This work represents the first step in the overall instrument validation that will take place over the next academic year. 
    more » « less
  5. Engineering education research and accreditation criteria have for some time emphasized that to adequately prepare engineers to meet 21st century challenges, programs need to move toward an approach that integrates professional knowledge, skills, and real-world experiences throughout the curriculum [1], [2], [3]. An integrated approach allows students to draw connections between different disciplinary content, develop professional skills through practice, and relate their emerging engineering competencies to the problems and communities they care about [4], [5]. Despite the known benefits, the challenges to implementing such major programmatic changes are myriad, including faculty’s limited expertise outside their own disciplinary area of specialization and lack of perspective of professional learning outcomes across the curriculum. In 2020, Montana State University initiated a five-year NSF-funded Revolutionizing Engineering Departments (RED) project to transform its environmental engineering program by replacing traditional topic-focused courses with a newly developed integrated and project-based curriculum (IPBC). The project engages all tenure-track faculty in the environmental engineering program as well as faculty from five external departments in a collaborative, iterative process to define what students should be expected to know and do at the completion of the undergraduate program. In the process, sustainability, professionalism, and systems thinking arose as foundational pillars of the successful environmental engineer and are proposed as three knowledge threads that can be woven throughout environmental engineering curricula. The paper explores the two-year programmatic redesign process and examines how lessons learned through the process can be applied to course development as the team transitions into the implementation phase of the project. Two new integrated project-based learning courses targeting the 1st- and 2nd-year levels will be taught in academic year 2023-2024. The approach described in this work can be utilized by similar programs as a model for bottom-up curriculum development and integration of non-technical content, which will be necessary for educating engineers of the future. 
    more » « less