skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Impact of Sintering Atmosphere and Temperature on the Phase Evolution of High Surface Area LSCF Prepared by In Situ Carbon Templating
The thermochemical stability of lanthanum strontium cobalt ferrite (LSCF) processed between 1000 °C–1200 °C via the in situ carbon templating method was studied. This method generates high surface area ceramics at traditional solid oxide fuel cell (SOFC) sintering temperatures by generating a carbon template in situ and subsequently removing the template by oxidation at 700 °C. Argon processed samples produced an amorphous carbon template, whereas nitrogen tended to form graphitic carbon. Prior to the oxidation step, nitrogen samples comprised larger La 2 O 3 crystallites (22–40 nm) compared to argon (9–17 nm). Upon oxidation, argon samples resulted in a pure LSCF phase with surface areas in the 21–29 m 2 ·g −1 range, whereas nitrogen samples contained significant impurities. This demonstrates that the size of La 2 O 3 crystallites formed during inert processing limited the ability to produce a pure LSCF phase. Symmetrical cells comprising nano-LSCF electrodes generated by the templating method were compared to cells sintered directly in air. Impedance results suggest that nano-LSCF cells and cells processed in air were dominated by interfacial charge transfer resistance and gas diffusion, respectively. The results map out conditions for preparing and integrating high surface area, nanostructured LSCF into SOFC electrodes at traditional sintering temperatures. Strategies for improving the interfacial resistance of nano-LSCF electrodes are discussed.  more » « less
Award ID(s):
1651186
PAR ID:
10315165
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
168
Issue:
3
ISSN:
0013-4651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A novel processing method that creates and preserves ceramic nanoparticles in solid oxide electrodes during co-sintering at traditional sintering temperatures is introduced. Specifically, carbon templated samarium-doped ceria nanoparticles (nSDC) were successfully integrated with commercial lanthanum strontium cobalt ferrite (LSCF) and commercial SDC powders, producing LSCF-SDC-nSDC cathodes upon processing. The effect of nSDC concentration on cathode electrocatalytic activity was investigated at low operational temperatures, 600 °C–700 °C, with symmetrical cells. Low nSDC loadings, ≤5 wt% nSDC, significantly decreased cell polarization resistance whereas higher loadings increased it. The best electrochemical performance was achieved with 5 wt% nSDC, lowering the polarization resistance by 41% at 600 °C. Fuel cell tests demonstrate that adding 5 wt% nSDC increased the maximum fuel cell power density by 38%. Electrochemical impedance spectra showed substantial improvements in both fuel cell polarization resistance and ohmic resistance, indicating that nSDC increased the electrocatalytically active area of the cathode. This work demonstrates a simple, novel method for effectively increasing electrocatalytic activity of solid oxide electrodes at low operational temperatures. 
    more » « less
  2. In this research, a direct-write 3D-printing method was utilized for the fabrication of inter-digitized solid oxide fuel cells (SOFCs) using ceramic materials. The cathode electrode was fabricated using the LSCF (La0.6Sr0.2Fe0.8Co0.2O3-δ) slurry loading and the Polyvinyl butyral (PVB) binder. The rheological parameters of slurries with varying LSCF slurry loading and PVB binder concentration were evaluated to determine their effect on the cathode trace performance in terms of microstructure, size, and resistance. Additionally, the dimensional shrinkage of LSCF lines after sintering was investigated to realize their influence on cathode line width and height. Moreover, the effect of the direct-write process parameters such as pressure, distance between the nozzle and substrate, and speed on the cathode line dimensions and resistance was evaluated. LSCF slurry with 50% solid loading, 12% binder, and 0.2% dispersant concentration was determined to be the optimal value for the fabrication of SOFCs using the direct-write method. The direct-write process parameters, in addition to the binder and LSCF slurry concentration ratios, had a considerable impact on the microstructure of cathode lines. Based on ANOVA findings, pressure and distance had significant effects on the cathode electrode resistance. An increase in the distance between the nozzle and substrate, speed, or extrusion pressure of the direct writing process increased the resistance of the cathode lines. These findings add to the ongoing effort to refine SOFC fabrication techniques, opening the avenues for advanced performance and efficiency of SOFCs in energy applications. 
    more » « less
  3. Operando Raman spectroscopy and electrochemical techniques were used to examine carbon deposition on niobium doped SrTiO 3 (STN) based SOFC anodes infiltrated with Ni, Co, Ce 0.9 Gd 0.1 O 2 (CGO) and combinations of these materials. Cells were operated with CH 4 /CO 2 mixtures at 750 °C. Raman data shows that carbon forms on all cells under operating conditions when Ni is present as an infiltrate. Additional experiments performed during cell cool down, and on separate material pellets (not subject to an applied potential), show that chemically labile oxygen available in the CGO infiltrate will preferentially oxidize all deposited surface carbon as temperatures drop below 700 °C. These observations highlight the benefit of CGO as a material in SOFC anodes but more importantly, the value of operando spectroscopic techniques as a tool when evaluating a material's susceptibility to carbon accumulation. Solely relying on ex situ measurements will potentially lead to false conclusions about the studied materials’ ability to resist carbon and improperly inform efforts to develop mechanisms describing electrochemical oxidation and material degradation mechanisms in these high temperature energy conversion devices. 
    more » « less
  4. Abstract The interface between cathode and electrolyte is a significant source of large interfacial resistance in solid‐state batteries (SSBs). Spark plasma sintering (SPS) allows densifying electrolyte and electrodes in one step, which can improve the interfacial contact in SSBs and significantly shorten the processing time. In this work, we proposed a two‐step joining process to prepare cathode (LiCoO2, LCO)/electrolyte (Li0.33La0.57TiO3, LLTO) half cells via SPS. Interdiffusion between Ti4+/Co3+was observed at the interface by SEM/STEM, resulting in the formation of the Li−Ti−La−Co−O and Li−Ti−Co−O phases in LLTO and the Li−Co−Ti−O phase in LCO. Computational modeling was performed to verify that the Li−Ti−Co−O phase has a LiTi2O4host lattice. In a study of interfacial electrical properties, the resistance of this interdiffusion layer was found to be 105 Ω, which is 40 times higher than the resistance of the individual LLTO phase. The formation of an interdiffusion layer is identified as the origin of the high interface resistance in the LLTO/LCO half‐cell. 
    more » « less
  5. null (Ed.)
    Positional isomers of alkenes are frequently transparent to the mass spectrometer and it is difficult to provide convincing data to support their presence. This work focuses on the development of a new reactive nano-electrospray ionization (nESI) platform that utilizes non-inert metal electrodes ( e.g. , Ir and Ru) for rapid detection of fatty acids by mass spectrometry (MS), with concomitant localization of the CC bond to differentiate fatty acid isomers. During the electrospray process, the electrical energy (direct current voltage) is harnessed for in situ oxide formation on the electrode surface via electro-oxidation. The as-formed surface oxides are found to facilitate in situ epoxide formation at the CC bond position and the products are analyzed by MS in real-time. This phenomenon has been applied to analyze isomers of unsaturated fatty acids from complex serum samples, without pre-treatment. 
    more » « less