skip to main content


Title: Mapping Potentially Acid Generating Material on Abandoned Mine Lands Using Remotely Piloted Aerial Systems
Weathering and transport of potentially acid generating material (PAGM) at abandoned mines can degrade downstream environments and contaminate water resources. Monitoring the thousands of abandoned mine lands (AMLs) for exposed PAGM using field surveys is time intensive. Here, we explore the use of Remotely Piloted Aerial Systems (RPASs) as a complementary remote sensing platform to map the spatial and temporal changes of PAGM across a mine waste rock pile on an AML. We focus on testing the ability of established supervised and unsupervised classification algorithms to map PAGM on imagery with very high spatial resolution, but low spectral sampling. At the Perry Canyon, NV, USA AML, we carried out six flights over a 29-month period, using a RPAS equipped with a 5-band multispectral sensor measuring in the visible to near infrared (400–1000 nm). We built six different 3 cm resolution orthorectified reflectance maps, and our tests using supervised and unsupervised classifications revealed benefits to each approach. Supervised classification schemes allowed accurate mapping of classes that lacked published spectral libraries, such as acid mine drainage (AMD) and efflorescent mineral salts (EMS). The unsupervised method produced similar maps of PAGM, as compared to supervised schemes, but with little user input. Our classified multi-temporal maps, validated with multiple field and lab-based methods, revealed persistent and slowly growing ‘hotspots’ of jarosite on the mine waste rock pile, whereas EMS exhibit more rapid fluctuations in extent. The mapping methods we detail for a RPAS carrying a broadband multispectral sensor can be applied extensively to AMLs. Our methods show promise to increase the spatial and temporal coverage of accurate maps critical for environmental monitoring and reclamation efforts over AMLs.  more » « less
Award ID(s):
1832170
NSF-PAR ID:
10315191
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Minerals
Volume:
11
Issue:
4
ISSN:
2075-163X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Surface meltwater generated on ice shelves fringing the Antarctic Ice Sheet can drive ice-shelf collapse, leading to ice sheet mass loss and contributing to global sea level rise. A quantitative assessment of supraglacial lake evolution is required to understand the influence of Antarctic surface meltwater on ice-sheet and ice-shelf stability. Cloud computing platforms have made the required remote sensing analysis computationally trivial, yet a careful evaluation of image processing techniques for pan-Antarctic lake mapping has yet to be performed. This work paves the way for automating lake identification at a continental scale throughout the satellite observational record via a thorough methodological analysis. We deploy a suite of different trained supervised classifiers to map and quantify supraglacial lake areas from multispectral Landsat-8 scenes, using training data generated via manual interpretation of the results from k-means clustering. Best results are obtained using training datasets that comprise spectrally diverse unsupervised clusters from multiple regions and that include rock and cloud shadow classes. We successfully apply our trained supervised classifiers across two ice shelves with different supraglacial lake characteristics above a threshold sun elevation of 20°, achieving classification accuracies of over 90% when compared to manually generated validation datasets. The application of our trained classifiers produces a seasonal pattern of lake evolution. Cloud shadowed areas hinder large-scale application of our classifiers, as in previous work. Our results show that caution is required before deploying ‘off the shelf’ algorithms for lake mapping in Antarctica, and suggest that careful scrutiny of training data and desired output classes is essential for accurate results. Our supervised classification technique provides an alternative and independent method of lake identification to inform the development of a continent-wide supraglacial lake mapping product. 
    more » « less
  2. null (Ed.)
    Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to different types of objects such as buildings, moving vehicles, and road networks. As such, classical machine learning approaches hardly can model the spatial relationship between sample pixels in the flooding area. (2) Handcrafted features associated with the data are usually required as input for conventional flood mapping models, which may not be able to fully utilize the underlying patterns of a large number of available data. (3) High-resolution optical imagery often has varied pixel digital numbers (DNs) for the same ground objects as a result of highly inconsistent illumination conditions during a flood. Accordingly, traditional methods of flood mapping have major limitations in generalization based on testing data. To address the aforementioned issues in urban flood mapping, we developed a patch similarity convolutional neural network (PSNet) using satellite multispectral surface reflectance imagery before and after flooding with a spatial resolution of 3 meters. We used spectral reflectance instead of raw pixel DNs so that the influence of inconsistent illumination caused by varied weather conditions at the time of data collection can be greatly reduced. Such consistent spectral reflectance data also enhance the generalization capability of the proposed model. Experiments on the high resolution imagery before and after the urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score, and overall accuracy compared with baseline classification models including support vector machine, decision tree, random forest, and AdaBoost, which were often poor in either precision or recall. The study paves the way to fuse bi-temporal remote sensing images for near real-time precision damage mapping associated with other types of natural hazards (e.g., wildfires and earthquakes). 
    more » « less
  3. High resolution mapping of coastal habitats is invaluable for resource inventory, change detection, and inventory of aquaculture applications. However, coastal areas, especially the interior of mangroves, are often difficult to access. An Unmanned Aerial Vehicle (UAV), equipped with a multispectral sensor, affords an opportunity to improve upon satellite imagery for coastal management because of the very high spatial resolution, multispectral capability, and opportunity to collect real-time observations. Despite the recent and rapid development of UAV mapping applications, few articles have quantitatively compared how much improvement there is of UAV multispectral mapping methods compared to more conventional remote sensing data such as satellite imagery. The objective of this paper is to quantitatively demonstrate the improvements of a multispectral UAV mapping technique for higher resolution images used for advanced mapping and assessing coastal land cover. We performed multispectral UAV mapping fieldwork trials over Indian River Lagoon along the central Atlantic coast of Florida. Ground Control Points (GCPs) were collected to generate a rigorous geo-referenced dataset of UAV imagery and support comparison to geo-referenced satellite and aerial imagery. Multi-spectral satellite imagery (Sentinel-2) was also acquired to map land cover for the same region. NDVI and object-oriented classification methods were used for comparison between UAV and satellite mapping capabilities. Compared with aerial images acquired from Florida Department of Environmental Protection, the UAV multi-spectral mapping method used in this study provided advanced information of the physical conditions of the study area, an improved land feature delineation, and a significantly better mapping product than satellite imagery with coarser resolution. The study demonstrates a replicable UAV multi-spectral mapping method useful for study sites that lack high quality data. 
    more » « less
  4. null (Ed.)
    Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest. 
    more » « less
  5. Ensemble-based change detection can improve map accuracies by combining information from multiple datasets. There is a growing literature investigating ensemble inputs and applications for forest disturbance detection and mapping. However, few studies have evaluated ensemble methods other than Random Forest classifiers, which rely on uninterpretable “black box” algorithms with hundreds of parameters. Additionally, most ensemble-based disturbance maps do not utilize independently and systematically collected field-based forest inventory measurements. Here, we compared three approaches for combining change detection results generated from multi-spectral Landsat time series with forest inventory measurements to map forest harvest events at an annual time step. We found that seven-parameter degenerate decision tree ensembles performed at least as well as 500-tree Random Forest ensembles trained and tested on the same LandTrendr segmentation results and both supervised decision tree methods consistently outperformed the top-performing voting approach (majority). Comparisons with an existing national forest disturbance dataset indicated notable improvements in accuracy that demonstrate the value of developing locally calibrated, process-specific disturbance datasets like the harvest event maps developed in this study. Furthermore, by using multi-date forest inventory measurements, we are able to establish a lower bound of 30% basal area removal on detectable harvests, providing biophysical context for our harvest event maps. Our results suggest that simple interpretable decision trees applied to multi-spectral temporal segmentation outputs can be as effective as more complex machine learning approaches for characterizing forest harvest events ranging from partial clearing to clear cuts, with important implications for locally accurate mapping of forest harvests and other types of disturbances. 
    more » « less