skip to main content


Title: Unsupervised and Semi-Supervised Domain Adaptation for Action Recognition from Drones
We address the problem of human action classification in drone videos. Due to the high cost of capturing and labeling large-scale drone videos with diverse actions, we present unsupervised and semi-supervised domain adaptation approaches that leverage both the existing fully annotated action recognition datasets and unannotated (or only a few annotated) videos from drones. To study the emerging problem of drone-based action recognition, we create a new dataset, NEC-DRONE, containing 5,250 videos to evaluate the task. We tackle both problem settings with 1) same and 2) different action label sets for the source (e.g., Kinectics dataset) and target domains (drone videos). We present a combination of video and instance-based adaptation methods, paired with either a classifier or an embedding-based framework to transfer the knowledge from source to target. Our results show that the proposed adaptation approach substantially improves the performance on these challenging and practical tasks. We further demonstrate the applicability of our method for learning cross-view action recognition on the Charades-Ego dataset. We provide qualitative analysis to understand the behaviors of our approaches.  more » « less
Award ID(s):
1755785
NSF-PAR ID:
10315229
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Winter Conference on Applications of Computer Vision (WACV)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Elofsson, Arne (Ed.)
    Abstract Motivation Cryoelectron tomography (cryo-ET) visualizes structure and spatial organization of macromolecules and their interactions with other subcellular components inside single cells in the close-to-native state at submolecular resolution. Such information is critical for the accurate understanding of cellular processes. However, subtomogram classification remains one of the major challenges for the systematic recognition and recovery of the macromolecule structures in cryo-ET because of imaging limits and data quantity. Recently, deep learning has significantly improved the throughput and accuracy of large-scale subtomogram classification. However, often it is difficult to get enough high-quality annotated subtomogram data for supervised training due to the enormous expense of labeling. To tackle this problem, it is beneficial to utilize another already annotated dataset to assist the training process. However, due to the discrepancy of image intensity distribution between source domain and target domain, the model trained on subtomograms in source domain may perform poorly in predicting subtomogram classes in the target domain. Results In this article, we adapt a few shot domain adaptation method for deep learning-based cross-domain subtomogram classification. The essential idea of our method consists of two parts: (i) take full advantage of the distribution of plentiful unlabeled target domain data, and (ii) exploit the correlation between the whole source domain dataset and few labeled target domain data. Experiments conducted on simulated and real datasets show that our method achieves significant improvement on cross domain subtomogram classification compared with baseline methods. Availability and implementation Software is available online https://github.com/xulabs/aitom. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract

    Advances in visual perceptual tasks have been mainly driven by the amount, and types, of annotations of large-scale datasets. Researchers have focused on fully-supervised settings to train models using offline epoch-based schemes. Despite the evident advancements, limitations and cost of manually annotated datasets have hindered further development for event perceptual tasks, such as detection and localization of objects and events in videos. The problem is more apparent in zoological applications due to the scarcity of annotations and length of videos-most videos are at most ten minutes long. Inspired by cognitive theories, we present a self-supervised perceptual prediction framework to tackle the problem of temporal event segmentation by building a stable representation of event-related objects. The approach is simple but effective. We rely on LSTM predictions of high-level features computed by a standard deep learning backbone. For spatial segmentation, the stable representation of the object is used by an attention mechanism to filter the input features before the prediction step. The self-learned attention maps effectively localize the object as a side effect of perceptual prediction. We demonstrate our approach on long videos from continuous wildlife video monitoring, spanning multiple days at 25 FPS. We aim to facilitate automated ethogramming by detecting and localizing events without the need for labels. Our approach is trained in an online manner on streaming input and requires only a single pass through the video, with no separate training set. Given the lack of long and realistic (includes real-world challenges) datasets, we introduce a new wildlife video dataset–nest monitoring of the Kagu (a flightless bird from New Caledonia)–to benchmark our approach. Our dataset features a video from 10 days (over 23 million frames) of continuous monitoring of the Kagu in its natural habitat. We annotate every frame with bounding boxes and event labels. Additionally, each frame is annotated with time-of-day and illumination conditions. We will make the dataset, which is the first of its kind, and the code available to the research community. We find that the approach significantly outperforms other self-supervised, traditional (e.g., Optical Flow, Background Subtraction) and NN-based (e.g., PA-DPC, DINO, iBOT), baselines and performs on par with supervised boundary detection approaches (i.e., PC). At a recall rate of 80%, our best performing model detects one false positive activity every 50 min of training. On average, we at least double the performance of self-supervised approaches for spatial segmentation. Additionally, we show that our approach is robust to various environmental conditions (e.g., moving shadows). We also benchmark the framework on other datasets (i.e., Kinetics-GEBD, TAPOS) from different domains to demonstrate its generalizability. The data and code are available on our project page:https://aix.eng.usf.edu/research_automated_ethogramming.html

     
    more » « less
  3. The success and impact of activity recognition algorithms largely depends on the availability of the labeled training samples and adaptability of activity recognition models across various domains. In a new environment, the pre-trained activity recognition models face challenges in presence of sensing bias- ness, device heterogeneities, and inherent variabilities in human behaviors and activities. Activity Recognition (AR) system built in one environment does not scale well in another environment, if it has to learn new activities and the annotated activity samples are scarce. Indeed building a new activity recognition model and training the model with large annotated samples often help overcome this challenging problem. However, collecting annotated samples is cost-sensitive and learning activity model at wild is computationally expensive. In this work, we propose an activity recognition framework, UnTran that utilizes source domains' pre-trained autoencoder enabled activity model that transfers two layers of this network to generate a common feature space for both source and target domain activities. We postulate a hybrid AR framework that helps fuse the decisions from a trained model in source domain and two activity models (raw and deep-feature based activity model) in target domain reducing the demand of annotated activity samples to help recognize unseen activities. We evaluated our framework with three real-world data traces consisting of 41 users and 26 activities in total. Our proposed UnTran AR framework achieves ≈ 75% F1 score in recognizing unseen new activities using only 10% labeled activity data in the target domain. UnTran attains ≈ 98% F1 score while recognizing seen activities in presence of only 2-3% of labeled activity samples. 
    more » « less
  4. null (Ed.)
    Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent{'}s actions can bring about myriad changes in the scene. Observable changes such as movements, manipulations, and transformations of the objects in the scene, are reflected in conventional video captioning. Unlike images, actions in videos are also inherently linked to social aspects such as intentions (why the action is taking place), effects (what changes due to the action), and attributes that describe the agent. Thus for video understanding, such as when captioning videos or when answering questions about videos, one must have an understanding of these commonsense aspects. We present the first work on generating \textit{commonsense} captions directly from videos, to describe latent aspects such as intentions, effects, and attributes. We present a new dataset {``}Video-to-Commonsense (V2C){''} that contains {\textasciitilde}9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. Both the generation task and the QA task can be used to enrich video captions. 
    more » « less
  5. Vedaldi, A. ; Bischof, H. ; Brox, T. ; Frahm, JM. (Ed.)
    The problem of action localization involves locating the action in the video, both over time and spatially in the image. The current dominant approaches use supervised learning to solve this problem. They require large amounts of annotated training data, in the form of frame-level bounding box annotations around the region of interest. In this paper, we present a new approach based on continual learning that uses feature-level predictions for self-supervision. It does not require any training annotations in terms of frame-level bounding boxes. The approach is inspired by cognitive models of visual event perception that propose a prediction-based approach to event understanding. We use a stack of LSTMs coupled with a CNN encoder, along with novel attention mechanisms, to model the events in the video and use this model to predict high-level features for the future frames. The prediction errors are used to learn the parameters of the models continuously. This self-supervised framework is not complicated as other approaches but is very effective in learning robust visual representations for both labeling and localization. It should be noted that the approach outputs in a streaming fashion, requiring only a single pass through the video, making it amenable for real-time processing. We demonstrate this on three datasets - UCF Sports, JHMDB, and THUMOS’13 and show that the proposed approach outperforms weakly-supervised and unsupervised baselines and obtains competitive performance compared to fully supervised baselines. Finally, we show that the proposed framework can generalize to egocentric videos and achieve state-of-the-art results on the unsupervised gaze prediction task. 
    more » « less