skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Digital Image-Based Phenotyping Platform for Analyzing Root Shape Attributes in Carrot
Root shape in carrot (Daucus carota subsp. sativus), which ranges from long and tapered to short and blunt, has been used for at least several centuries to classify carrot cultivars. The subjectivity involved in determining market class hinders the establishment of metric-based standards and is ill-suited to dissecting the genetic basis of such quantitative phenotypes. Advances in digital image acquisition and analysis has enabled new methods for quantifying sizes of plant structures and shapes, but in order to dissect the genetic control of the shape features that define market class in carrot, a tool is required that quantifies the specific shape features used by humans in distinguishing between classes. This study reports the construction and demonstration of the first such platform, which facilitates rapid phenotyping of traits that are measurable by hand, such as length and width, as well as principal component analysis (PCA) of the root contour and its curvature. This latter approach is of particular interest, as it enabled the detection of a novel and significant quantitative trait, defined here as root fill, which accounts for 85% of the variation in root shape. Curvature analysis was demonstrated to be an effective method for precise measurement of the broadness of the carrot shoulder, and degree of tip fill; the first principal component of the respective curvature profiles captured 87% and 84% of the total variance. This platform’s performance was validated in two experimental panels. First, a diverse, global collection of germplasm was used to assess its capacity to identify market classes through clustering analysis. Second, a diallel mating design between inbred breeding lines of differing market classes was used to estimate the heritability of the key phenotypes that define market class, which revealed significant variation in the narrow-sense heritability of size and shape traits, ranging from 0.14 for total root size, to 0.84 for aspect ratio. These results demonstrate the value of high-throughput digital phenotyping in characterizing the genetic control of complex quantitative phenotypes.  more » « less
Award ID(s):
2048425
PAR ID:
10315266
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in plant science
Volume:
12
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carrot (Daucus carotavar.sativus) cultivars with common root shape, appearance, and end-use are grouped and commercialized in market classes. The shape of the carrot storage root is the result of growth and development, which is highly influenced by genotype; however, the extent to which planting density affects root shape traits and its interaction with genotype remains unexplored. To observe the effects of market class and density on carrot root shape characteristics, five cultivars classified in five different market classes, including Imperator, Nantes, Danvers, Chantenay, and Ball, were each grown at five planting densities ranging from 0.5 million to 4.5 million plants/ha. A generalized complete block design with a two-way factorial treatment arrangement of the two factors, density and genotype, was used in three environments. Roots were phenotyped using a digital imaging pipeline and scored for root size (length, maximum width) and compound root shape traits including traits derived from the principal component analysis of root contour profiles like root fill and tip and shoulder curvature. The results suggest that planting density had minimal impact on the shape of carrot roots, and the expected shape for each market class was maintained regardless of planting density; however, the analysis was constrained by the presence of interactions among genotype, density, and environment, which influence the contribution of main effects to shape. For the Nantes, Danvers, Chantenay, and Imperator market classes, planting density influenced the size of the carrot root, with size decreasing by up to 50% in length and width at high planting densities. We found high estimates of broad-sense heritability for traits that determine the shape of the carrot root, such as root fill and length-to-width ratio, which capture size-independent variation of the storage root. Although environmental signals play a role, our results suggested that the shape of the carrot root is primarily determined by genotype, and that planting density generally does not have a significant effect on its shape. 
    more » « less
  2. The size and shape of carrot roots are the primary determinants not only of yield, but also market class. These quantitative phenotypes have historically been challenging to objectively evaluate, and thus subjective visual assessment of market class remains the primary method by which selection for these traits is performed. However, advancements in digital image analysis have recently made possible the high-throughput quantification of size and shape attributes. It is therefore now feasible to utilize modern methods of genetic analysis to investigate the genetic control of root morphology. To this end, this study utilized both genome wide association analysis (GWAS) and genomic-estimated breeding values (GEBVs) and demonstrated that the components of market class are highly polygenic traits, likely under the influence of many small effect QTL. Relatively large proportions of additive genetic variance for many of the component phenotypes support high predictive ability of GEBVs; average prediction ability across underlying market class traits was 0.67. GWAS identified multiple QTL for four of the phenotypes which compose market class: length, aspect ratio, maximum width, and root fill, a previously uncharacterized trait which represents the size-independent portion of carrot root shape. By combining digital image analysis with GWAS and GEBVs, this study represents a novel advance in our understanding of the genetic control of market class in carrot. The immediate practical utility and viability of genomic selection for carrot market class is also described, and concrete guidelines for the design of training populations are provided. 
    more » « less
  3. Abstract This study investigated the genetic basis of carrot root shape traits using composite interval mapping in two biparental populations (n = 119 and n = 128). The roots of carrot F2:3 progenies were grown over 2 years and analyzed using a digital imaging pipeline to extract root phenotypes that compose market class. Broad-sense heritability on an entry-mean basis ranged from 0.46 to 0.80 for root traits. Reproducible quantitative trait loci (QTL) were identified on chromosomes 2 and 6 on both populations. Colocalization of QTLs for phenotypically correlated root traits was also observed and coincided with previously identified QTLs in published association and linkage mapping studies. Individual QTLs explained between 14 and 27% of total phenotypic variance across traits, while four QTLs for length-to-width ratio collectively accounted for up to 73% of variation. Predicted genes associated with the OFP-TRM (OVATE Family Proteins—TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathway were identified within QTL support intervals. This observation raises the possibility of extending the current regulon model of fruit shape to include carrot storage roots. Nevertheless, the precise molecular mechanisms through which this pathway operates in roots characterized by secondary growth originating from cambium layers remain unknown. 
    more » « less
  4. Context: Stalk lodging causes up to 43 % of yield losses in maize (Zea mays L.) worldwide, significantly worsening food and feed shortages. Stalk lodging resistance is a complex trait specified by several structural, material, and geometric phenotypes. However, the identity, relative contribution, and genetic tractability of these intermediate phenotypes remain unknown. Objective: The study is designed to identify and evaluate plant-, organ-, and tissue-level intermediate phenotypes associated with stalk lodging resistance following standardized phenotyping protocols and to understand the variation and genetic tractability of these intermediate phenotypes. Methods: We examined 16 diverse maize hybrids in two environments to identify and evaluate intermediate phenotypes associated with stalk flexural stiffness, a reliable indicator of stalk lodging resistance, at physiological maturity. Engineering-informed and machine learning models were employed to understand relationships among intermediate phenotypes and stalk flexural stiffness. Results: Stalk flexural stiffness showed significant genetic variation and high heritability (0.64) in the evaluated hybrids. Significant genetic variation and comparable heritability for the cross-sectional moment of inertia and Young’s modulus indicated that geometric and material properties are under tight genetic control and play a combinatorial role in determining stalk lodging resistance. Among the twelve internode-level traits measured on the bottom and the ear internode, most traits exhibited significant genetic variation among hybrids, moderate to high heritability, and considerable effect of genotype × environment interaction. The marginal statistical model based on structural engineering beam theory revealed that 74–80 % of the phenotypic variation for flexural stiffness was explained by accounting for the major diameter, minor diameter, and rind thickness of the stalks. The machine learning model explained a relatively modest proportion (58–62 %) of the variation for flexural stiffness. 
    more » « less
  5. Abstract The development of crops with deeper roots holds substantial promise to mitigate the consequences of climate change. Deeper roots are an essential factor to improve water uptake as a way to enhance crop resilience to drought, to increase nitrogen capture, to reduce fertilizer inputs, and to increase carbon sequestration from the atmosphere to improve soil organic fertility. A major bottleneck to achieving these improvements is high-throughput phenotyping to quantify root phenotypes of field-grown roots. We address this bottleneck with Digital Imaging of Root Traits (DIRT)/3D, an image-based 3D root phenotyping platform, which measures 18 architecture traits from mature field-grown maize (Zea mays) root crowns (RCs) excavated with the Shovelomics technique. DIRT/3D reliably computed all 18 traits, including distance between whorls and the number, angles, and diameters of nodal roots, on a test panel of 12 contrasting maize genotypes. The computed results were validated through comparison with manual measurements. Overall, we observed a coefficient of determination of r2>0.84 and a high broad-sense heritability of Hmean2> 0.6 for all but one trait. The average values of the 18 traits and a developed descriptor to characterize complete root architecture distinguished all genotypes. DIRT/3D is a step toward automated quantification of highly occluded maize RCs. Therefore, DIRT/3D supports breeders and root biologists in improving carbon sequestration and food security in the face of the adverse effects of climate change. 
    more » « less