skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging the water‐energy nexus to derive benefits for the electric grid through demand‐side management in the water supply and wastewater sectors
Award ID(s):
1845931
PAR ID:
10315281
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
WIREs Water
Volume:
8
Issue:
3
ISSN:
2049-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sensor‐based, semicontinuous observations of water quality parameters have become critical to understanding how changes in land use, management, and rainfall‐runoff processes impact water quality at diurnal to multidecadal scales. While some commercially available water quality sensors function adequately under a range of turbidity conditions, other instruments, including those used to measure nutrient concentrations, cease to function in high turbidity waters (> 100 nephelometric turbidity units [NTU]) commonly found in large rivers, arid‐land rivers, and coastal areas. This is particularly true during storm events, when increases in turbidity are often concurrent with increases in nutrient transport. Here, we present the development and validation of a system that can affordably provide Self‐Cleaning FiLtrAtion for Water quaLity SenSors (SC‐FLAWLeSS), and enables long‐term, semicontinuous data collection in highly turbid waters. The SC‐FLAWLeSS system features a three‐step filtration process where: (1) a coarse screen at the inlet removes particles with diameter > 397 μm, (2) a settling tank precipitates and then removes particles with diameters between 10 and 397 μm, and (3) a self‐cleaning, low‐cost, hollow fiber membrane technology removes particles ≥ 0.2μm. We tested the SC‐FLAWLeSS system by measuring nitrate sensor data loss during controlled, serial sediment additions in the laboratory and validated it by monitoring soluble phosphate concentrations in the arid Rio Grande river (New Mexico, U.S.A.), at hourly sampling resolution. Our data demonstrate that the system can resolve turbidity‐related interference issues faced by in situ optical and wet chemistry sensors, even at turbidity levels > 10,000 NTU. 
    more » « less
  2. Abstract Thin films with a nanometer‐scale thickness are of great interest to both scientific and industrial communities due to their numerous applications and unique behaviors different from the bulk. However, the understanding of thin‐film mechanics is still greatly hampered due to their intrinsic fragility and the lack of commercially available experimental instruments. In this review, we first discuss the progression of thin‐film mechanical testing methods based on the supporting substrate: film‐on‐solid substrate method, film‐on‐water tensile tests, and water‐assisted free‐standing tensile tests. By comparing past studies on a model polymer, polystyrene, the effect of different substrates and confinement effect on the thin‐film mechanics is evaluated. These techniques have generated fruitful scientific knowledge in the field of organic semiconductors for the understanding of structure–mechanical property relationships. We end this review by providing our perspective for their bright prospects in much broader applications and materials of interest. 
    more » « less
  3. Abstract Groundwater/surface‐water (GW/SW) exchange and hyporheic processes are topics receiving increasing attention from the hydrologic community. Hydraulic, chemical, temperature, geophysical, and remote sensing methods are used to achieve various goals (e.g., inference of GW/SW exchange, mapping of bed materials, etc.), but the application of these methods is constrained by site conditions such as water depth, specific conductance, bed material, and other factors. Researchers and environmental professionals working on GW/SW problems come from diverse fields and rarely have expertise in all available field methods; hence there is a need for guidance to design field campaigns and select methods that both contribute to study goals and are likely to work under site‐specific conditions. Here, we present the spreadsheet‐based GW/SW‐Method Selection Tool (GW/SW‐MST) to help practitioners identify methods for use in GW/SW and hyporheic studies. The GW/SW‐MST is a Microsoft Excel‐based decision support tool in which the user selects answers to questions about GW/SW‐related study goals and site parameters and characteristics. Based on user input, the tool indicates which methods from a toolbox of 32 methods could potentially contribute to achieving the specified goals at the site described. 
    more » « less
  4. null (Ed.)
  5. Abstract Centralized water infrastructure has, over the last century, brought safe and reliable drinking water to much of the world. But climate change, combined with aging and underfunded infrastructure, is increasingly testing the limits of—and reversing gains made by—this approach. To address these growing strains and gaps, we must assess and advance alternatives to centralized water provision and sanitation. The water literature is rife with examples of systems that are neither centralized nor networked, yet meet water needs of local communities in important ways, including: informal and hybrid water systems, decentralized water provision, community‐based water management, small drinking water systems, point‐of‐use treatment, small‐scale water vendors, and packaged water. Our work builds on these literatures by proposing a convergence approach that can integrate and explore the benefits and challenges of modular, adaptive, and decentralized (“MAD”) water provision and sanitation, often foregrounding important advances in engineering technology. We further provide frameworks to evaluate justice, economic feasibility, governance, human health, and environmental sustainability as key parameters of MAD water system performance. This article is categorized under:Engineering Water > Water, Health, and SanitationHuman Water > Water GovernanceEngineering Water > Sustainable Engineering of Water 
    more » « less