As multi-tenant FPGA applications continue to scale in size and complexity, their need for resilience against environmental effects and malicious actions continues to grow. To ensure continuously correct computation, faults in the compute fabric must be identified, isolated, and suppressed in the nanosecond to microsecond range. In this paper, we detail a circuit and system-level methodology to detect compute failure conditions due to on-FPGA voltage attacks. Our approach rapidly suppresses incorrect results and regenerates potentially-tainted results before they propagate, allowing time for an attacker to be suppressed. Instrumentation includes voltage sensors to detect error conditions induced by attackers. This analysis is paired with focused remediation approaches involving data buffering, fault suppression, results recalculation, and computation restart. Our approach has been demonstrated using an RSA encryption circuit implemented on a Stratix 10 FPGA. We show that a voltage attack using on-FPGA power wasters can be effectively detected and computation halted in 15 ns, preventing the injection of timing faults. Potentially tainted results are successfully regenerated, allowing for fault-free circuit operation. A full characterization of the latency and resource overheads of fault detection and recovery is provided.
more »
« less
Intelligent Electromagnetic Sensors for Non-Invasive Trojan Detection
Rapid growth of sensors and the Internet of Things is transforming society, the economy and the quality of life. Many devices at the extreme edge collect and transmit sensitive information wirelessly for remote computing. The device behavior can be monitored through side-channel emissions, including power consumption and electromagnetic (EM) emissions. This study presents a holistic self-testing approach incorporating nanoscale EM sensing devices and an energy-efficient learning module to detect security threats and malicious attacks directly at the front-end sensors. The built-in threat detection approach using the intelligent EM sensors distributed on the power lines is developed to detect abnormal data activities without degrading the performance while achieving good energy efficiency. The minimal usage of energy and space can allow the energy-constrained wireless devices to have an on-chip detection system to predict malicious attacks rapidly in the front line.
more »
« less
- PAR ID:
- 10315310
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 21
- Issue:
- 24
- ISSN:
- 1424-8220
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain’s distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency.more » « less
-
Stealthy chip-level tamper attacks, such as hardware Trojan insertions or security-critical circuit modifications, can threaten modern microelectronic systems’ security. While traditional inspection and side-channel methods offer potential for tamper detection, they may not reliably detect all forms of attacks and often face practical limitations in terms of scalability, accuracy, or applicability. This work introduces a non-invasive, contactless tamper detection method employing a complementary split-ring resonator (CSRR). CSRRs, which are typically deployed for non-destructive material characterization, can be placed on the surface of the chip’s package to detect subtle variations in the impedance of the chip’s power delivery network (PDN) caused by tampering. The changes in the PDN’s impedance profile perturb the local electric near field and consequently affect the sensor’s impedance. These changes manifest as measurable variations in the sensor’s scattering parameters. By monitoring these variations, our approach enables robust and cost-effective physical integrity verification requiring neither physical contact with the chips or printed circuit board (PCB) nor activation of the underlying malicious circuits. To validate our claims, we demonstrate the detection of various chip-level tamper events on an FPGA manufactured with 28 nm technology.more » « less
-
Network-on-Chip (NoC) is widely employed by multi-core System-on-Chip (SoC) architectures to cater to their communication requirements. Increasing NoC complexity coupled with its widespread usage has made it a focal point of potential security attacks. Distributed Denial-of-Service (DDoS) is one such attack that is caused by malicious intellectual property (IP) cores flooding the network with unnecessary packets causing significant performance degradation through NoC congestion. In this paper, we propose an efficient framework for real-time detection and localization of DDoS attacks. This paper makes three important contributions. We propose a real-time and lightweight DDoS attack detection technique for NoC-based SoCs by monitoring packets to detect any violations. Once a potential attack has been flagged, our approach is also capable of localizing the malicious IPs using the latency data in the NoC routers. The applications are statically profiled during design time to determine communication patterns. These patterns are then used for real-time detection and localization of DDoS attacks. We have evaluated the effectiveness of our approach against different NoC topologies and architecture models using both real benchmarks and synthetic traffic patterns. Our experimental results demonstrate that our proposed approach is capable of real-time detection and localization of DDoS attacks originating from multiple malicious IPs in NoC-based SoCs.more » « less
-
null (Ed.)Autonomous vehicles (AVs), equipped with numerous sensors such as camera, LiDAR, radar, and ultrasonic sensor, are revolutionizing the transportation industry. These sensors are expected to sense reliable information from a physical environment, facilitating the critical decision-making process of the AVs. Ultrasonic sensors, which detect obstacles in a short distance, play an important role in assisted parking and blind spot detection events. However, due to their weak security level, ultrasonic sensors are particularly vulnerable to signal injection attacks, when the attackers inject malicious acoustic signals to create fake obstacles and intentionally mislead the vehicles to make wrong decisions with disastrous aftermath. In this paper, we systematically analyze the attack model of signal injection attacks toward moving vehicles. By considering the potential threats, we propose SoundFence, a physical-layer defense system which leverages the sensors’ signal processing capability without requiring any additional equipment. SoundFence verifies the benign measurement results and detects signal injection attacks by analyzing sensor readings and the physical-layer signatures of ultrasonic signals. Our experiment with commercial sensors shows that SoundFence detects most (more than 95%) of the abnormal sensor readings with very few false alarms, and it can also accurately distinguish the real echo from injected signals to identify injection attacks.more » « less
An official website of the United States government

