Epidemiological studies link increased fall risk to obesity in older adults, but the mechanism through which obesity increases falls and fall risks is unknown. This study investigates if obesity (Body Mass Index: BMI>30 kg/m2) influenced gait and standing postural characteristics of community dwelling older adults leading to increased risk of falls. One hundred healthy older adults (age 74.0±7.6 years, range of 56-90 years) living independently in a community participated in this study. Participants' history of falls over the previous two years was recorded, with emphasis on frequency and characteristics of falls. Participants with at least two falls in the prior year were classified as fallers. Each individual was assessed for postural stability during quiet stance and gait stability during 10 meters walking. Fall risk parameters of postural sway (COP area, velocity, path-length) were measured utilizing a standard forceplate coupled with an accelerometer affixed at the sternum. Additionally, parameters of gait stability (walking velocity, double support time, and double support time variability) were assessed utilizing an accelerometer affixed at the participant's sternum. Gait and postural stability analyses indicate that obese older adults who fell have significantly altered gait pattern (longer double support time and greater variability) exhibiting a loss of automaticity in walking and, postural instability as compared to their counterparts (i.e., higher sway area and path length, and higher sway velocity) further increasing the risk of a fall given a perturbation. Body weight/BMI is a risk factor for falls in older adults as measured by gait and postural stability parameters.
more »
« less
Prediction of fall risk among community-dwelling older adults using a wearable system
Abstract Falls are among the most common cause of decreased mobility and independence in older adults and rank as one of the most severe public health problems with frequent fatal consequences. In the present study, gait characteristics from 171 community-dwelling older adults were evaluated to determine their predictive ability for future falls using a wearable system. Participants wore a wearable sensor (inertial measurement unit, IMU) affixed to the sternum and performed a 10-m walking test. Measures of gait variability, complexity, and smoothness were extracted from each participant, and prospective fall incidence was evaluated over the following 6-months. Gait parameters were refined to better represent features for a random forest classifier for the fall-risk classification utilizing three experiments. The results show that the best-trained model for faller classification used both linear and nonlinear gait parameters and achieved an overall 81.6 ± 0.7% accuracy, 86.7 ± 0.5% sensitivity, 80.3 ± 0.2% specificity in the blind test. These findings augment the wearable sensor's potential as an ambulatory fall risk identification tool in community-dwelling settings. Furthermore, they highlight the importance of gait features that rely less on event detection methods, and more on time series analysis techniques. Fall prevention is a critical component in older individuals’ healthcare, and simple models based on gait-related tasks and a wearable IMU sensor can determine the risk of future falls.
more »
« less
- Award ID(s):
- 1650566
- PAR ID:
- 10315442
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We used smartphone technology to differentiate the gait characteristics of older adults with osteoporosis with falls from those without falls. We assessed gait mannerism and obtained activities of daily living (ADLs) with wearable sensor systems (smartphones and inertial measurement units [IMUs]) to identify fall-risk characteristics. We recruited 49 persons with osteoporosis: 14 who had a fall within a year before recruitment and 35 without falls. IMU sensor signals were sampled at 50 Hz using a customized smartphone app (Lockhart Monitor) attached at the pelvic region. Longitudinal data was collected using MoveMonitor+ (DynaPort) IMU over three consecutive days. Given the close association between serum calcium, albumin, PTH, Vitamin D, and musculoskeletal health, we compared these markers in individuals with history of falls as compared to nonfallers. For the biochemical parameters fall group had significantly lower calcium ( P = 0.01*) and albumin ( P = 0.05*) and higher parathyroid hormone levels ( P = 0.002**) than nonfall group. In addition, persons with falls had higher sway area ( P = 0.031*), lower dynamic stability ( P < 0.001***), gait velocity ( P = 0.012*), and were less able to perform ADLs ( P = 0.002**). Thus, persons with osteoporosis with a history of falls can be differentiated by using dynamic real-time measurements that can be easily captured by a smartphone app, thus avoiding traditional postural sway and gait measures that require individuals to be tested in a laboratory setting.more » « less
-
Abstract An active lifestyle can mitigate physical decline and cognitive impairment in older adults. Regular walking exercises for older individuals result in enhanced balance and reduced risk of falling. In this article, we present a study on gait monitoring for older adults during walking using an integrated system encompassing an assistive robot and wearable sensors. The system fuses data from the robot onboard Red Green Blue plus Depth (RGB-D) sensor with inertial and pressure sensors embedded in shoe insoles, and estimates spatiotemporal gait parameters and dynamic margin of stability in real-time. Data collected with 24 participants at a community center reveal associations between gait parameters, physical performance (evaluated with the Short Physical Performance Battery), and cognitive ability (measured with the Montreal Cognitive Assessment). The results validate the feasibility of using such a portable system in out-of-the-lab conditions and will be helpful for designing future technology-enhanced exercise interventions to improve balance, mobility, and strength and potentially reduce falls in older adults.more » « less
-
Objectives: To examine the extent to which older adults’ perceived balance, a balance performance test, and fear of falling (FOF) were associated with falls in the last month. Methods: The Health Belief Model served as the theoretical framework. A retrospective, cross-sectional, secondary analysis using data from the National Health and Aging Trends Study was conducted ( N = 7499). Results: Multiple logistic regression analysis revealed that the odds of reporting a fall in the past month were 3.3 times ( p < .001) greater for participants who self-reported having a balance problem compared to those who did not. The Short Physical Performance Battery and FOF were not uniquely associated with falls. Discussion: Our findings support limited evidence suggesting that older adults’ perceived balance is a better predictor of falls than balance performance. Assessing older adults’ perceived balance may be a new way to assess older adults’ fall risk to prevent future falls.more » « less
-
Abstract AimsTo examine how perceived balance problems are associated with self‐reported falls in the past month after controlling for known correlates of falls among older adults. BackgroundApproximately 30% of adults age 65 and older fall each year. Most accidental falls are preventable, and older adults' engagement in fall prevention is imperative. Limited research suggest that older adults do not use the term ‘fall risk’ to describe their risk for falls. Instead, they commonly use the term ‘balance problems’. Yet, commonly used fall risk assessment tools in both primary and acute care do not assess older adults' perceived balance. Design and MethodThe Health Belief Model and the concept of perceived susceptibility served as the theoretical framework. A retrospective, cross‐sectional secondary analysis using data from the National Health and Aging Trends Study from year 2015 was conducted. The outcome variable was self‐reported falls in the last month. ResultsA subsample of independently living participants (N = 7499) was selected, and 10.3% of the sample reported a fall. Multiple logistic regression analysis revealed that the odds of reporting a fall in the past month was 3.4 times (p < .001) greater for participants who self‐reported having a balance problem compared to those who did not. In contrast, fear of falling and perceived memory problems were not uniquely associated with falls. Using a mobility device, reporting pain, poor self‐rated health status, depression and anxiety scores were also associated with falling. Conclusion and ImplicationsOlder adults' perceived balance problem is strongly associated with their fall risk. Perceived balance may be important to discuss with older adults to increase identification of fall risk. Older adults' perceived balance should be included in nursing fall risk assessments and fall prevention interventions. A focus on balance may increase older adults' engagement in fall prevention.more » « less
An official website of the United States government

