skip to main content

Title: Regulation of Biofilm Exopolysaccharide Production by Cyclic Di-Guanosine Monophosphate
Many bacterial species in nature possess the ability to transition into a sessile lifestyle and aggregate into cohesive colonies, known as biofilms. Within a biofilm, bacterial cells are encapsulated within an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, nucleic acids, lipids, and other small molecules. The transition from planktonic growth to the biofilm lifecycle provides numerous benefits to bacteria, such as facilitating adherence to abiotic surfaces, evasion of a host immune system, and resistance to common antibiotics. As a result, biofilm-forming bacteria contribute to 65% of infections in humans, and substantially increase the energy and time required for treatment and recovery. Several biofilm specific exopolysaccharides, including cellulose, alginate, Pel polysaccharide, and poly- N -acetylglucosamine (PNAG), have been shown to play an important role in bacterial biofilm formation and their production is strongly correlated with pathogenicity and virulence. In many bacteria the biosynthetic machineries required for assembly of these exopolysaccharides are regulated by common signaling molecules, with the second messenger cyclic di-guanosine monophosphate (c - di-GMP) playing an especially important role in the post-translational activation of exopolysaccharide biosynthesis. Research on treatments of antibiotic-resistant and biofilm-forming bacteria through direct targeting of c-di-GMP signaling has shown promise, including peptide-based treatments that sequester more » intracellular c-di-GMP. In this review, we will examine the direct role c-di-GMP plays in the biosynthesis and export of biofilm exopolysaccharides with a focus on the mechanism of post-translational activation of these pathways, as well as describe novel approaches to inhibit biofilm formation through direct targeting of c-di-GMP. « less
Authors:
;
Award ID(s):
1945162
Publication Date:
NSF-PAR ID:
10315487
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Sponsoring Org:
National Science Foundation
More Like this
  1. Waldor, Matthew K. (Ed.)
    Bacterial biofilms are multicellular communities that collectively overcome environmental threats and clinical treatments. To regulate the biofilm lifecycle, bacteria commonly transduce sensory information via the second messenger molecule cyclic diguanylate (c-di-GMP). Using experimental and modeling approaches, we quantitatively capture c-di-GMP signal transmission via the bifunctional polyamine receptor NspS-MbaA, from ligand binding to output, in the pathogen Vibrio cholerae . Upon binding of norspermidine or spermidine, NspS-MbaA synthesizes or degrades c-di-GMP, respectively, which, in turn, drives alterations specifically to biofilm gene expression. A long-standing question is how output specificity is achieved via c-di-GMP, a diffusible molecule that regulates dozens of effectors.more »We show that NspS-MbaA signals locally to specific effectors, sensitizing V . cholerae to polyamines. However, local signaling is not required for specificity, as changes to global cytoplasmic c-di-GMP levels can selectively regulate biofilm genes. This work establishes the input–output dynamics underlying c-di-GMP signaling, which could be useful for developing bacterial manipulation strategies.« less
  2. Abstract Background Second messengers, c-di-GMP and (p)ppGpp, are vital regulatory molecules in bacteria, influencing cellular processes such as biofilm formation, transcription, virulence, quorum sensing, and proliferation. While c-di-GMP and (p)ppGpp are both synthesized from GTP molecules, they play antagonistic roles in regulating the cell cycle. In C. crescentus , c-di-GMP works as a major regulator of pole morphogenesis and cell development. It inhibits cell motility and promotes S-phase entry by inhibiting the activity of the master regulator, CtrA. Intracellular (p)ppGpp accumulates under starvation, which helps bacteria to survive under stressful conditions through regulating nucleotide levels and halting proliferation. (p)ppGpp respondsmore »to nitrogen levels through RelA-SpoT homolog enzymes, detecting glutamine concentration using a nitrogen phosphotransferase system (PTS Ntr ). This work relates the guanine nucleotide-based second messenger regulatory network with the bacterial PTS Ntr system and investigates how bacteria respond to nutrient availability. Results We propose a mathematical model for the dynamics of c-di-GMP and (p)ppGpp in C. crescentus and analyze how the guanine nucleotide-based second messenger system responds to certain environmental changes communicated through the PTS Ntr system. Our mathematical model consists of seven ODEs describing the dynamics of nucleotides and PTS Ntr enzymes. Our simulations are consistent with experimental observations and suggest, among other predictions, that SpoT can effectively decrease c-di-GMP levels in response to nitrogen starvation just as well as it increases (p)ppGpp levels. Thus, the activity of SpoT (or its homologues in other bacterial species) can likely influence the cell cycle by influencing both c-di-GMP and (p)ppGpp. Conclusions In this work, we integrate current knowledge and experimental observations from the literature to formulate a novel mathematical model. We analyze the model and demonstrate how the PTS Ntr system influences (p)ppGpp, c-di-GMP, GMP and GTP concentrations. While this model does not consider all aspects of PTS Ntr signaling, such as cross-talk with the carbon PTS system, here we present our first effort to develop a model of nutrient signaling in C. crescentus .« less
  3. Microscopic organisms known as bacteria are found in virtually every environment on the planet. One reason bacteria are so successful is that they are able to form communities known as biofilms on surfaces in animals and other living things, as well as on rocks and other features in the environment. These biofilms protect the bacteria from fluctuations in the environment and toxins. For over 30 years, a class of enzymes called the GGDEF enzymes were thought to make a single signal known as cyclic di-GMP that regulates the formation of biofilms. However, in 2016, a team of researchers reported thatmore »some GGDEF enzymes, including one from a bacterium called Geobacter sulfurreducens, were also able to produce two other signals known as cGAMP and cyclic di-AMP. The experiments involved making the enzymes and testing their activity outside the cell. Therefore, it remained unclear whether these enzymes (dubbed ‘Hypr’ GGDEF enzymes) actually produce all three signals inside cells and play a role in forming bacterial biofilms. G. sulfurreducens is unusual because it is able to grow on metallic minerals or electrodes to generate electrical energy. As part of a community of microorganisms, they help break down pollutants in contaminated areas and can generate electricity from wastewater. Now, Hallberg, Chan et al. – including many of the researchers involved in the 2016 work – combined several experimental and mathematical approaches to study the Hypr GGDEF enzymes in G. sulfurreducens. The experiments show that the Hypr GGDEF enzymes produced cGAMP, but not the other two signals, inside the cells. This cGAMP regulated the ability of G. sulfurreducens to grow by extracting electrical energy from the metallic minerals, which appears to be a new, biofilm-less lifestyle. Further experiments revealed how Hypr GGDEF enzymes have evolved to preferentially make cGAMP over the other two signals. Together, these findings demonstrate that enzymes with the ability to make several different signals, are capable of generating specific responses in bacterial cells. By understanding how bacteria make decisions, it may be possible to change their behaviors. The findings of Hallberg, Chan et al. help to identify the signaling pathways involved in this decision-making and provide new tools to study them in the future.« less
  4. The growth of bacterial biofilms on implanted medical devices causes harmful infections and device failure. Biofilm development initiates when bacteria attach to and sense a surface. For the common nosocomial pathogen Pseudomonas aeruginosa and many others, the transition to the biofilm phenotype is controlled by the intracellular signal and second messenger cyclic-di-GMP (c-di-GMP). It is not known how biomedical materials might be adjusted to impede c-di-GMP signalling, and there are few extant methods for conducting such studies. Here, we develop such a method. We allowed P. aeruginosa to attach to the surfaces of poly(ethylene glycol) diacrylate (PEGDA) hydrogels. These bacteriamore »contained a plasmid for a green fluorescent protein (GFP) reporter for c-di-GMP. We used laser-scanning confocal microscopy to measure the dynamics of the GFP reporter for 3 h, beginning 1 h after introducing bacteria to the hydrogel. We controlled for the effects of changes in bacterial metabolism using a promoterless plasmid for GFP, and for the effects of light passing through different hydrogels being differently attenuated by using fluorescent plastic beads as ‘standard candles’ for calibration. We demonstrate that this method can measure statistically significant differences in c-di-GMP signalling associated with different PEGDA gel types and with the surface-exposed protein PilY1.« less
  5. ABSTRACT The dinucleotide second messenger c-di-GMP has emerged as a central regulator of reversible cell attachment during bacterial biofilm formation. A prominent cell adhesion mechanism first identified in pseudomonads combines two c-di-GMP-mediated processes: transcription of a large adhesin and its cell surface display via posttranslational proteolytic control. Here, we characterize an orthologous c-di-GMP effector system and show that it is operational in Vibrio cholerae , where it regulates two distinct classes of adhesins. Through structural analyses, we reveal a conserved autoinhibition mechanism of the c-di-GMP receptor that controls adhesin proteolysis and present a structure of a c-di-GMP-bound receptor module. Wemore »further establish functionality of the periplasmic protease controlled by the receptor against the two adhesins. Finally, transcription and functional assays identify physiological roles of both c-di-GMP-regulated adhesins in surface attachment and biofilm formation. Together, our studies highlight the conservation of a highly efficient signaling effector circuit for the control of cell surface adhesin expression and its versatility by revealing strain-specific variations. IMPORTANCE Vibrio cholerae , the causative agent of the diarrheal disease cholera, benefits from a sessile biofilm lifestyle that enhances survival outside the host but also contributes to host colonization and infectivity. The bacterial second messenger c-di-GMP has been identified as a central regulator of biofilm formation, including in V. cholerae ; however, our understanding of the pathways that contribute to this process is incomplete. Here, we define a conserved signaling system that controls the stability of large adhesion proteins at the cell surface of V. cholerae , which are important for cell attachment and biofilm formation. Insight into the regulatory circuit underlying biofilm formation may inform targeted strategies to interfere with a process that renders this bacterium remarkably adaptable to changing environments.« less