skip to main content

Title: Polarization images of accretion flow around supermassive black holes: Imprints of toroidal field structure
Abstract With unprecedented angular resolution, the Event Horizon Telescope (EHT) has opened a new era of black hole studies. We have previously calculated the expected polarization images of M 87* with EHT observations in mind. There, we demonstrated that circular polarization (CP) images, as well as linear polarization (LP) maps, can convey quite useful information, such as the flow structure and magnetic field configuration around the black hole. In this paper, we make new predictions for the cases in which disk emission dominates over jet emission, bearing Sgr A* in mind. Here we set the proton-to-electron temperature ratio of the disk component to be Tp/Te ∼ 2 so as to suppress jet emission relative to emission from accretion flow. As a result, we obtain ring-like images and triple-forked images around the black hole for face-on and edge-on cases, respectively. We also find significant CP components in the images (≳10% in fraction), with both positive and negative signs, amplified through the Faraday conversion, not depending sensitively on the inclination angles. Furthermore, we find a “separatrix” in the CP images, across which the sign of CP is reversed and on which the LP flux is brightest, that can be attributed to the helical magnetic more » field structure in the disk. These results indicate that future full polarization EHT images are a quite useful tracer of the magnetic field structure. We also discuss to what extent we will be able to extract information regarding magnetic field configurations under the scattering in the interstellar plasma, in future EHT polarimetric observations of Sgr A*. « less
Authors:
; ; ; ;
Award ID(s):
2034306
Publication Date:
NSF-PAR ID:
10315624
Journal Name:
Publications of the Astronomical Society of Japan
Volume:
73
Issue:
4
ISSN:
0004-6264
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract For testing different electron temperature ( T e ) prescriptions in general relativistic magnetohydrodynamics (GRMHD) simulations through observations, we propose to utilize linear polarization (LP) and circular polarization (CP) images. We calculate the polarization images based on a semi-magnetically arrested disk GRMHD model for various T e parameters, bearing M87 in mind. We find an LP–CP separation in the images of the low- T e disk cases at 230GHz; namely, the LP flux mainly originates from downstream of the jet, and the CP flux comes from the counter-side jet, while the total intensity is maximum at the jet base.more »This can be understood as follows: although the LP flux is generated through synchrotron emission widely around the black hole, most of the LP flux from the jet base does not reach the observer, since it undergoes Faraday rotation ( ∝ T e − 2 ) when passing through the outer cold disk and is thus depolarized. Hence, only the LP flux from the downstream (not passing the cold dense plasmas) can survive. Meanwhile, the CP flux is generated from the LP flux by Faraday conversion ( ∝ T e ) in the inner hot region. Stronger CP flux is thus observed from the counter-side jet. Moreover, the LP–CP separation is more enhanced at a lower frequency, such as 86 GHz, but is rather weak at 43 GHz, since the media in the latter case is optically thick for synchrotron self-absorption so that all of the fluxes should come from the photosphere. The same is true for cases with higher mass accretion rates and/or larger inclination angles.« less
  2. Abstract The Event Horizon Telescope (EHT) recently released the first linearly polarized images of the accretion flow around the supermassive black hole Messier 87*, hereafter M87*. The spiraling polarization pattern found in the EHT images favored magnetically arrested disks as the explanation for the EHT image. With next-generation improvements to very long baseline interferometry on the horizon, understanding similar polarized features in the highly lensed structure known as the “photon ring,” where photons make multiple half orbits about the black hole before reaching the observer, will be critical to the analysis of future images. Recent work has indicated that thismore »image region may be depolarized relative to more direct emission. We expand this observation by decomposing photon half orbits in the EHT library of simulated images of the M 87* accretion system and find that images of magnetically arrested disk simulations show a relative depolarization of the photon ring attributable to destructive interference of oppositely spiraling electric field vectors; this antisymmetry, which arises purely from strong gravitational lensing, can produce up to ∼50% depolarization in the photon ring region with respect to the direct image. In systems that are not magnetically arrested and with the exception of systems with high spin and ions and electrons of equal temperature, we find that highly lensed indirect subimages are almost completely depolarized, causing a modest depolarization of the photon ring region in the complete image. We predict that next-generation EHT observations of M 87* polarization should jointly constrain the black hole spin and the underlying emission and magnetic field geometry.« less
  3. ABSTRACT Faraday rotation has been seen at millimeter wavelengths in several low-luminosity active galactic nuclei, including Event Horizon Telescope (EHT) targets M87* and Sgr A*. The observed rotation measure (RM) probes the density, magnetic field, and temperature of material integrated along the line of sight. To better understand how accretion disc conditions are reflected in the RM, we perform polarized radiative transfer calculations using a set of general relativistic magnetohydrodynamic (GRMHD) simulations appropriate for M87*. We find that in spatially resolved millimetre wavelength images on event horizon scales, the RM can vary by orders of magnitude and even flip sign.more »The observational consequences of this spatial structure include significant time-variability, sign-flips, and non-λ2 evolution of the polarization plane. For some models, we find that internal RM can cause significant bandwidth depolarization even across the relatively narrow fractional bandwidths observed by the EHT. We decompose the linearly polarized emission in these models based on their RM and find that emission in front of the mid-plane can exhibit orders of magnitude less Faraday rotation than emission originating from behind the mid-plane or within the photon ring. We confirm that the spatially unresolved (i.e. image integrated) RM is a poor predictor of the accretion rate, with substantial scatter stemming from time variability and inclination effects. Models can be constrained with repeated observations to characterize time variability and the degree of non-λ2 evolution of the polarization plane.« less
  4. Abstract We present a framework for characterizing the spatiotemporal power spectrum of the variability expected from the horizon-scale emission structure around supermassive black holes, and we apply this framework to a library of general relativistic magnetohydrodynamic (GRMHD) simulations and associated general relativistic ray-traced images relevant for Event Horizon Telescope (EHT) observations of Sgr A*. We find that the variability power spectrum is generically a red-noise process in both the temporal and spatial dimensions, with the peak in power occurring on the longest timescales and largest spatial scales. When both the time-averaged source structure and the spatially integrated light-curve variability aremore »removed, the residual power spectrum exhibits a universal broken power-law behavior. On small spatial frequencies, the residual power spectrum rises as the square of the spatial frequency and is proportional to the variance in the centroid of emission. Beyond some peak in variability power, the residual power spectrum falls as that of the time-averaged source structure, which is similar across simulations; this behavior can be naturally explained if the variability arises from a multiplicative random field that has a steeper high-frequency power-law index than that of the time-averaged source structure. We briefly explore the ability of power spectral variability studies to constrain physical parameters relevant for the GRMHD simulations, which can be scaled to provide predictions for black holes in a range of systems in the optically thin regime. We present specific expectations for the behavior of the M87* and Sgr A* accretion flows as observed by the EHT.« less
  5. Abstract The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5–61 days) is comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust interferometric observables that are sensitive to the expected structural changes of the images but are free of station-based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on all six linearly independent nontrivial baseline triangles that can be formedmore »from the 2017 observations. We showed that three triangles exhibit very low day-to-day variability, with a dispersion of ∼3°–5°. The only triangles that exhibit substantially higher variability (∼90°–180°) are the ones with baselines that cross the visibility amplitude minima on the u – v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters. We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a marginal effect on the model consistency with the observed level of variability. On the other hand, the most discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas.« less