Abstract The development of a platinum‐catalyzed desaturation of cyclic ketones to their conjugated α,β‐unsaturated counterparts is reported in this full article. A unique diene‐platinum complex was identified to be an efficient catalyst, which enables direct metal‐enolate formation. The reaction operates under mild conditions without using strong bases or acids. Good to excellent yields can be achieved for diverse and complex scaffolds. A wide range of functional groups, including those sensitive to acids, bases/nucleophiles, or palladium species, are tolerated, which represents a distinct feature from other known desaturation methods. Mechanistically, this platinum catalysis exhibits a fast and reversible α‐deprotonation followed by a rate‐determining β‐hydrogen elimination process, which is different from the prior Pd‐catalyzed desaturation method. Promising preliminary enantioselective desaturation using a chiral‐diene‐platinum complex has also been obtained.
more »
« less
Synthesis of α,β-unsaturated epoxy ketones utilizing a bifunctional sulfonium/phosphonium ylide
Herein, a new protocol for rapid synthesis of α,β-unsaturated epoxy ketones utilizing a bifunctional sulfonium/phosphonium ylide is described. This approach comprises two sequential chemoselective reactions between sulfonium and phosphonium ylides and two distinct aldehydes, which allows for the rapid construction of a variety of unsymmetric α,β-unsaturated epoxy ketones. This methodology allows the rapid construction of the core reactive functionality of a family of lipid peroxidation products, the epoxyketooctadecenoic acids, but can be further broadly utilized as a useful synthon for the synthesis of natural products, particularly those derived from oxidized fatty acids. Accordingly, a protocol utilizing this approach to synthesize the epoxyketooctadecenoic acid family of molecules is described.
more »
« less
- Award ID(s):
- 1904530
- PAR ID:
- 10315689
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 57
- Issue:
- 58
- ISSN:
- 1359-7345
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Transition metal catalysis plays a pivotal role in transforming unreactive C–H bonds. However, regioselective activation of distal aliphatic C–H bonds poses a tremendous challenge, particularly in the absence of directing templates. Activation of a methylene C–H bond in the presence of methyl C–H is underexplored. Here we show activation of a methylene C–H bond in the presence of methyl C–H bonds to form unsaturated bicyclic lactones. The protocol allows the reversal of the general selectivity in aliphatic C–H bond activation. Computational studies suggest that reversible C–H activation is followed by β-hydride elimination to generate the Pd-coordinated cycloalkene that undergoes stereoselective C–O cyclization, and subsequent β-hydride elimination to provide bicyclic unsaturated lactones. The broad generality of this reaction has been highlighted via dehydrogenative lactonization of mid to macro ring containing acids along with the C–H olefination reaction with olefin and allyl alcohol. The method substantially simplifies the synthesis of important bicyclic lactones that are important features of natural products as well as pharmacoactive molecules.more » « less
-
The α-acyloxylcarbonyl motif can be found in many important pharmaceuticals and biologically active natural products and their derivatives. In this manuscript, the direct synthesis of α-acyloxylketones from ketones and readily available carboxylic acids was realized using a photo-assisted halogen bond-mediated organocatalytic α-acyloxylation reaction. The desired α-acyloxylation products were obtained in good to high yields.more » « less
-
Abstract A bifunctional iminophosphorane (BIMP)‐catalysed enantioselective synthesis of α,β‐unsaturated cyclohexenones through a facially selective 1,3‐prototropic shift of β,γ‐unsaturated prochiral isomers, under mild reaction conditions and in short reaction times, on a range of structurally diverse substrates, is reported. α,β‐Unsaturated cyclohexenone products primed for downstream derivatisation were obtained in high yields (up to 99 %) and consistently high enantioselectivity (up to 99 %ee). Computational studies into the reaction mechanism and origins of enantioselectivity, including multivariate linear regression of TS energy, were carried out and the obtained data were found to be in good agreement with experimental findings.more » « less
-
Abstract Enzymes from secondary metabolic pathways possess broad potential for the selective synthesis of complex bioactive molecules. However, the practical application of these enzymes for organic synthesis is dependent on the development of efficient, economical, operationally simple, and well‐characterized systems for preparative scale reactions. We sought to bridge this knowledge gap for the selective biocatalytic synthesis of β‐hydroxy‐α‐amino acids, which are important synthetic building blocks. To achieve this goal, we demonstrated the ability of ObiH, anl‐threonine transaldolase, to achieve selective milligram‐scale synthesis of a diverse array of non‐standard amino acids (nsAAs) using a scalable whole cell platform. We show how the initial selectivity of the catalyst is high and how the diastereomeric ratio of products decreases at high conversion due to product re‐entry into the catalytic cycle. ObiH‐catalyzed reactions with a variety of aromatic, aliphatic and heterocyclic aldehydes selectively generated a panel of β‐hydroxy‐α‐amino acids possessing broad functional‐group diversity. Furthermore, we demonstrated that ObiH‐generated β‐hydroxy‐α‐amino acids could be modified through additional transformations to access important motifs, such as β‐chloro‐α‐amino acids and substituted α‐keto acids.more » « less
An official website of the United States government

