skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Robust Context-Based Deep Learning Approach for Highly Imbalanced Hyperspectral Classification
Hyperspectral imaging is an area of active research with many applications in remote sensing, mineral exploration, and environmental monitoring. Deep learning and, in particular, convolution-based approaches are the current state-of-the-art classification models. However, in the presence of noisy hyperspectral datasets, these deep convolutional neural networks underperform. In this paper, we proposed a feature augmentation approach to increase noise resistance in imbalanced hyperspectral classification. Our method calculates context-based features, and it uses a deep convolutional neuronet (DCN). We tested our proposed approach on the Pavia datasets and compared three models, DCN, PCA + DCN, and our context-based DCN, using the original datasets and the datasets plus noise. Our experimental results show that DCN and PCA + DCN perform well on the original datasets but not on the noisy datasets. Our robust context-based DCN was able to outperform others in the presence of noise and was able to maintain a comparable classification accuracy on clean hyperspectral images.  more » « less
Award ID(s):
1700219
PAR ID:
10315738
Author(s) / Creator(s):
; ; ;
Editor(s):
Doulamis, Anastasios D.
Date Published:
Journal Name:
Computational Intelligence and Neuroscience
Volume:
2021
ISSN:
1687-5265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agaian, Sos S.; Jassim, Sabah A.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)
    Neural networks have emerged to be the most appropriate method for tackling the classification problem for hyperspectral images (HIS). Convolutional neural networks (CNNs), being the current state-of-art for various classification tasks, have some limitations in the context of HSI. These CNN models are very susceptible to overfitting because of 1) lack of availability of training samples, 2) large number of parameters to fine-tune. Furthermore, the learning rates used by CNN must be small to avoid vanishing gradients, and thus the gradient descent takes small steps to converge and slows down the model runtime. To overcome these drawbacks, a novel quaternion based hyperspectral image classification network (QHIC Net) is proposed in this paper. The QHIC Net can model both the local dependencies between the spectral channels of a single-pixel and the global structural relationship describing the edges or shapes formed by a group of pixels, making it suitable for HSI datasets that are small and diverse. Experimental results on three HSI datasets demonstrate that the QHIC Net performs on par with the traditional CNN based methods for HSI Classification with a far fewer number of parameters. Keywords: Classification, deep learning, hyperspectral imaging, spectral-spatial feature learning 
    more » « less
  2. Messinger, David W.; Velez-Reyes, Miguel (Ed.)
    Recently, multispectral and hyperspectral data fusion models based on deep learning have been proposed to generate images with a high spatial and spectral resolution. The general objective is to obtain images that improve spatial resolution while preserving high spectral content. In this work, two deep learning data fusion techniques are characterized in terms of classification accuracy. These methods fuse a high spatial resolution multispectral image with a lower spatial resolution hyperspectral image to generate a high spatial-spectral hyperspectral image. The first model is based on a multi-scale long short-term memory (LSTM) network. The LSTM approach performs the fusion using a multiple step process that transitions from low to high spatial resolution using an intermediate step capable of reducing spatial information loss while preserving spectral content. The second fusion model is based on a convolutional neural network (CNN) data fusion approach. We present fused images using four multi-source datasets with different spatial and spectral resolutions. Both models provide fused images with increased spatial resolution from 8m to 1m. The obtained fused images using the two models are evaluated in terms of classification accuracy on several classifiers: Minimum Distance, Support Vector Machines, Class-Dependent Sparse Representation and CNN classification. The classification results show better performance in both overall and average accuracy for the images generated with the multi-scale LSTM fusion over the CNN fusion 
    more » « less
  3. Previous approaches on 3D shape segmentation mostly rely on heuristic processing and hand-tuned geometric descriptors. In this paper, we propose a novel 3D shape representation learning approach, Directionally Convolutional Network (DCN), to solve the shape segmentation problem. DCN extends convolution operations from images to the surface mesh of 3D shapes. With DCN, we learn effective shape representations from raw geometric features, i.e., face normals and distances, to achieve robust segmentation. More specifically, a two-stream segmentation framework is proposed: one stream is made up by the proposed DCN with the face normals as the input, and the other stream is implemented by a neural network with the face distance histogram as the input. The learned shape representations from the two streams are fused by an element-wise product. Finally, Conditional Random Field (CRF) is applied to optimize the segmentation. Through extensive experiments conducted on benchmark datasets, we demonstrate that our approach outperforms the current state-of-the-arts (both classic and deep learning-based) on a large variety of 3D shapes. 
    more » « less
  4. Deep learning is an important technique for extracting value from big data. However, the effectiveness of deep learning requires large volumes of high quality training data. In many cases, the size of training data is not large enough for effectively training a deep learning classifier. Data augmentation is a widely adopted approach for increasing the amount of training data. But the quality of the augmented data may be questionable. Therefore, a systematic evaluation of training data is critical. Furthermore, if the training data is noisy, it is necessary to separate out the noise data automatically. In this paper, we propose a deep learning classifier for automatically separating good training data from noisy data. To effectively train the deep learning classifier, the original training data need to be transformed to suit the input format of the classifier. Moreover, we investigate different data augmentation approaches to generate sufficient volume of training data from limited size original training data. We evaluated the quality of the training data through cross validation of the classification accuracy with different classification algorithms. We also check the pattern of each data item and compare the distributions of datasets. We demonstrate the effectiveness of the proposed approach through an experimental investigation of automated classification of massive biomedical images. Our approach is generic and is easily adaptable to other big data domains. 
    more » « less
  5. Deep learning is an important technique for extracting value from big data. However, the effectiveness of deep learning requires large volumes of high quality training data. In many cases, the size of training data is not large enough for effectively training a deep learning classifier. Data augmentation is a widely adopted approach for increasing the amount of training data. But the quality of the augmented data may be questionable. Therefore, a systematic evaluation of training data is critical. Furthermore, if the training data is noisy, it is necessary to separate out the noise data automatically. In this paper, we propose a deep learning classifier for automatically separating good training data from noisy data. To effectively train the deep learning classifier, the original training data need to be transformed to suit the input format of the classifier. Moreover, we investigate different data augmentation approaches to generate sufficient volume of training data from limited size original training data. We evaluated the quality of the training data through cross validation of the classification accuracy with different classification algorithms. We also check the pattern of each data item and compare the distributions of datasets. We demonstrate the effectiveness of the proposed approach through an experimental investigation of automated classification of massive biomedical images. Our approach is generic and is easily adaptable to other big data domains. 
    more » « less