Abstract Cells make decisions through their communication with other cells and receiving signals from their environment. Using single-cell transcriptomics, computational tools have been developed to infer cell–cell communication through ligands and receptors. However, the existing methods only deal with signals sent by the measured cells in the data, the received signals from the external system are missing in the inference. Here, we present exFINDER, a method that identifies such external signals received by the cells in the single-cell transcriptomics datasets by utilizing the prior knowledge of signaling pathways. In particular, exFINDER can uncover external signals that activate the given target genes, infer the external signal-target signaling network (exSigNet), and perform quantitative analysis on exSigNets. The applications of exFINDER to scRNA-seq datasets from different species demonstrate the accuracy and robustness of identifying external signals, revealing critical transition-related signaling activities, inferring critical external signals and targets, clustering signal-target paths, and evaluating relevant biological events. Overall, exFINDER can be applied to scRNA-seq data to reveal the external signal-associated activities and maybe novel cells that send such signals.
more »
« less
A single-cell resolved cell-cell communication model explains lineage commitment in hematopoiesis
ABSTRACT Cells do not make fate decisions independently. Arguably, every cell-fate decision occurs in response to environmental signals. In many cases, cell-cell communication alters the dynamics of the internal gene regulatory network of a cell to initiate cell-fate transitions, yet models rarely take this into account. Here, we have developed a multiscale perspective to study the granulocyte-monocyte versus megakaryocyte-erythrocyte fate decisions. This transition is dictated by the GATA1-PU.1 network: a classical example of a bistable cell-fate system. We show that, for a wide range of cell communication topologies, even subtle changes in signaling can have pronounced effects on cell-fate decisions. We go on to show how cell-cell coupling through signaling can spontaneously break the symmetry of a homogenous cell population. Noise, both intrinsic and extrinsic, shapes the decision landscape profoundly, and affects the transcriptional dynamics underlying this important hematopoietic cell-fate decision-making system. This article has an associated ‘The people behind the papers’ interview.
more »
« less
- Award ID(s):
- 2045327
- PAR ID:
- 10315740
- Date Published:
- Journal Name:
- Development
- Volume:
- 148
- Issue:
- 24
- ISSN:
- 0950-1991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In biology, cell-fate decisions are controlled by complex gene regulation. Although gene expression data may be collected at multiple time points, it remains difficult to construct the continuous dynamics from the data. In this work, we developed a data-driven approach, NeuralGene, a model based on neural ordinary differential equations (ODEs), to reconstruct continuous dynamical systemsgoverning gene regulation from temporal gene expression data. In addition, NeuralGene has the flexibility of incorporating partial prior biological information in the model to further improve its accuracy. For a given cell at a static time point, the NeuralGene model can impute its continuous gene expression dynamics and predict its cell fate. We applied NeuralGene to a simulation toggle-switch model to verify its utility in modeling and reconstructing temporal dynamics. In addition, NeuralGene was applied to experimental single-cell qPCR data to show its ability for gene expression imputation and cell-fate prediction.more » « less
-
null (Ed.)Single-cell RNA sequencing (scRNA-seq) data provides unprecedented information on cell fate decisions; however, the spatial arrangement of cells is often lost. Several recent computational methods have been developed to impute spatial information onto a scRNA-seq dataset through analyzing known spatial expression patterns of a small subset of genes known as a reference atlas. However, there is a lack of comprehensive analysis of the accuracy, precision, and robustness of the mappings, along with the generalizability of these methods, which are often designed for specific systems. We present a system-adaptive deep learning-based method (DEEPsc) to impute spatial information onto a scRNA-seq dataset from a given spatial reference atlas. By introducing a comprehensive set of metrics that evaluate the spatial mapping methods, we compare DEEPsc with four existing methods on four biological systems. We find that while DEEPsc has comparable accuracy to other methods, an improved balance between precision and robustness is achieved. DEEPsc provides a data-adaptive tool to connect scRNA-seq datasets and spatial imaging datasets to analyze cell fate decisions. Our implementation with a uniform API can serve as a portal with access to all the methods investigated in this work for spatial exploration of cell fate decisions in scRNA-seq data. All methods evaluated in this work are implemented as an open-source software with a uniform interface.more » « less
-
Cell-to-cell communication is fundamental to multicellular organisms and unicellular organisms living in a microbiome. It is thought to have evolved as a stress- or quorum-sensing mechanism in unicellular organisms. A unique cell-to-cell communication mechanism that uses reactive oxygen species (ROS) as a signal (termed the “ROS wave”) was identified in flowering plants. This process is essential for systemic signaling and plant acclimation to stress and can spread from a small group of cells to the entire plant within minutes. Whether a similar signaling process is found in other organisms is however unknown. Here, we report that the ROS wave can be found in unicellular algae, amoeba, ferns, mosses, mammalian cells, and isolated hearts. We further show that this process can be triggered in unicellular and multicellular organisms by a local stress or H2O2treatment and blocked by the application of catalase or NADPH oxidase inhibitors and that in unicellular algae it communicates important stress–response signals between cells. Taken together, our findings suggest that an active process of cell-to-cell ROS signaling, like the ROS wave, evolved before unicellular and multicellular organisms diverged. This mechanism could have communicated an environmental stress signal between cells and coordinated the acclimation response of many different cells living in a community. The finding of a signaling process, like the ROS wave, in mammalian cells further contributes to our understanding of different diseases and could impact the development of drugs that target for example cancer or heart disease.more » « less
-
ABSTRACT The lineage decision that generates the epiblast and primitive endoderm from the inner cell mass (ICM) is a paradigm for cell fate specification. Recent mathematics has formalized Waddington's landscape metaphor and proven that lineage decisions in detailed gene network models must conform to a small list of low-dimensional stereotypic changes called bifurcations. The most plausible bifurcation for the ICM is the so-called heteroclinic flip that we define and elaborate here. Our re-analysis of recent data suggests that there is sufficient cell movement in the ICM so the FGF signal, which drives the lineage decision, can be treated as spatially uniform. We thus extend the bifurcation model for a single cell to the entire ICM by means of a self-consistently defined time-dependent FGF signal. This model is consistent with available data and we propose additional dynamic experiments to test it further. This demonstrates that simplified, quantitative and intuitively transparent descriptions are possible when attention is shifted from specific genes to lineages. The flip bifurcation is a very plausible model for any situation where the embryo needs control over the relative proportions of two fates by a morphogen feedback.more » « less