skip to main content


Title: A Graphite∥PTCDI Aqueous Dual‐Ion Battery
Abstract

A full cell chemistry of aqueous dual‐ion battery (DIB) was reported, comprising the graphite cathode and 3,4,9,10‐perylenetetracarboxylic diimide (PTCDI) as the anode. This DIB employed a mixture aqueous electrolyte: 5 mtributylmethylammonium (TBMA) chloride plus 5 mMgCl2, where [MgCl3]and TBMA+serve as the charge carriers for cathode and anode of the DIB, respectively. This novel full cell exhibited a specific capacity of around 41 mAh g−1based on the total active mass of both electrodes with an average operation voltage of 1.45 V and stable cycling for 400 cycles.

 
more » « less
Award ID(s):
2038381
NSF-PAR ID:
10446918
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemSusChem
Volume:
15
Issue:
5
ISSN:
1864-5631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It remains a challenge to design aqueous electrolytes to secure the complete reversibility of zinc metal anodes. The concentrated water‐in‐salt electrolytes, e.g., 30 m ZnCl2, are promising candidates to address the challenges of the Zn metal anode. However, the pure 30 m ZnCl2electrolyte fails to deliver a smooth surface morphology and a practically relevant Coulombic efficiency. Herein, it is reported that a small concentration of vanillin, 5 mg mLwater−1, added to 30 m ZnCl2transforms the reversibility of Zn metal anode by eliminating dendrites, lowering the Hammett acidity, and forming an effective solid electrolyte interphase. The presence of vanillin in the electrolyte enables the Zn metal anode to exhibit a high Coulombic efficiency of 99.34% at a low current density of 0.2 mA cm−2, at which the impacts of the hydrogen evolution reaction are allowed to play out. Using this new electrolyte, a full cell Zn metal battery with an anode/cathode capacity (N/P) ratio of 2:1 demonstrates no capacity fading over 800 cycles.

     
    more » « less
  2. Abstract

    The surging demand for environmental‐friendly and safe electrochemical energy storage systems has driven the development of aqueous zinc (Zn)‐ion batteries (ZIBs). However, metallic Zn anodes suffer from severe dendrite growth and large volume change, resulting in a limited lifetime for aqueous ZIB applications. Here, it is shown that 3D mesoporous carbon (MC) with controlled carbon and defect configurations can function as a highly reversible and dendrite‐free Zn host, enabling the stable operation of aqueous ZIBs. The MC host has a structure‐controlled architecture that contains optimal sp2‐carbon and defect sites, which results in an improved initial nucleation energy barrier and promotes uniform Zn deposition. As a consequence, the MC host shows outstanding Zn plating/stripping performance over 1000 cycles at 2 mA cm−2and over 250 cycles at 6 mA cm−2in asymmetric cells. Density functional theory calculations further reveal the role of the defective sp2‐carbon surface in Zn adsorption energy. Moreover, a full cell based on Zn@MC900 anode and V2O5cathode exhibits remarkable rate performance and cycling stability over 3500 cycles. These results establish a structure‐mechanism‐performance relationship of the carbon host as a highly reversible Zn anode for the reliable operation of ZIBs.

     
    more » « less
  3. Abstract

    Aqueous rechargeable batteries are promising solutions for large‐scale energy storage. Such batteries have the merit of low cost, innate safety, and environmental friendliness. To date, most known aqueous ion batteries employ metal cation charge carriers. Here, we report the first “rocking‐chair” NH4‐ion battery of the full‐cell configuration by employing an ammonium Prussian white analogue, (NH4)1.47Ni[Fe(CN)6]0.88, as the cathode, an organic solid, 3,4,9,10‐perylenetetracarboxylic diimide (PTCDI), as the anode, and 1.0 maqueous (NH4)2SO4as the electrolyte. This novel aqueous ammonium‐ion battery demonstrates encouraging electrochemical performance: an average operation voltage of ca. 1.0 V, an attractive energy density of ca. 43 Wh kg−1based on both electrodes’ active mass, and excellent cycle life over 1000 cycles with 67 % capacity retention. Importantly, the topochemistry results of NH4+in these electrodes point to a new paradigm of NH4+‐based energy storage.

     
    more » « less
  4. Abstract

    In this work, a functional covalent gel material is developed to resolve the severe dendritic growth and hydrogen evolution reaction toward Zn/electrolyte interface in aqueous zinc‐ion batteries (ZIBs). A covalent gel layer with superior durability forms homogeneously on the surface of Zn foil. The covalent gel with triazole functional groups can uniformize the transport of Zn2+due to the interactions between Zn2+ions and the triazole groups in the covalent gel. As a consequence, the symmetrical battery with triazole covalent gel maintains stable Zn plating/stripping for over 3000 h at 1 mA cm−2and 1 mAh cm−2, and the full cell combined with a V2O5cathode operates steadily and continuously for at least 1800 cycles at 5 A g−1with a capacity retention rate of 67.0%. This work provides a train of thought to develop stable covalent gels for the protection of zinc anode toward high‐performance ZIBs.

     
    more » « less
  5. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less