Adversarial attacks against machine learning models have threatened various real-world applications such as spam filtering and sentiment analysis. In this paper, we propose a novel framework, learning to discriminate perturbations (DISP), to identify and adjust malicious perturbations, thereby blocking adversarial attacks for text classification models. To identify adversarial attacks, a perturbation discriminator validates how likely a token in the text is perturbed and provides a set of potential perturbations. For each potential perturbation, an embedding estimator learns to restore the embedding of the original word based on the context and a replacement token is chosen based on approximate kNN search. DISP can block adversarial attacks for any NLP model without modifying the model structure or training procedure. Extensive experiments on two benchmark datasets demonstrate that DISP significantly outperforms baseline methods in blocking adversarial attacks for text classification. In addition, in-depth analysis shows the robustness of DISP across different situations.
more »
« less
Jespipe: A Plugin-Based, Open MPI Framework for Adversarial Machine Learning Analysis
Research is increasingly showing the tremendous vulnerability in machine learning models to seemingly undetectable adversarial inputs. One of the current limitations in adversarial machine learning research is the incredibly time-consuming testing of novel defenses against various attacks and across multiple datasets, even with high computing power. To address this limitation, we have developed Jespipe as a new plugin-based, parallel-by-design Open MPI framework that aids in evaluating the robustness of machine learning models. The plugin-based nature of this framework enables researchers to specify any pre-training data manipulations, machine learning models, adversarial models, and analysis or visualization metrics with their input Python files. Because this framework is plugin-based, a researcher can easily incorporate model implementations using popular deep learning libraries such as PyTorch, Keras, TensorFlow, Theano, or MXNet, or adversarial robustness tools such as IBM’s Adversarial Robustness Toolbox or Foolbox. The parallelized nature of this framework also enables researchers to evaluate various learning or attack models with multiple datasets simultaneously by specifying all the models and datasets they would like to test with our XML control file template. Overall, Jespipe shows promising results by reducing latency in adversarial machine learning algorithm development and testing compared to traditional Jupyter notebook workflows.
more »
« less
- Award ID(s):
- 1851890
- PAR ID:
- 10315943
- Date Published:
- Journal Name:
- 2021 IEEE International Conference on Big Data (Big Data)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Massive datasets are typically distributed geographically across multiple sites, where scalability, data privacy and integrity, as well as bandwidth scarcity typically discourage uploading these data to a central server. This has propelled the so-called federated learning framework where multiple workers exchange information with a server to learn a “centralized” model using data locally generated and/or stored across workers. This learning framework necessitates workers to communicate iteratively with the server. Although appealing for its scalability, one needs to carefully address the various data distribution shifts across workers, which degrades the performance of the learnt model. In this context, the distributionally robust op-timization framework is considered here. The objective is to endow the trained model with robustness against adversarially manipulated input data, or, distributional uncertainties, such as mismatches between training and testing data distributions, or among datasets stored at different workers. To this aim, the data distribution is assumed unknown, and to land within a Wasserstein ball centered around the empirical data distribution. This robust learning task entails an infinite-dimensional optimization problem, which is challenging. Leveraging a strong duality result, a surrogate is obtained, for which a primal-dual algorithm is developed. Compared to classical methods, the proposed algorithm offers robustness with little computational overhead. Numerical tests using image datasets showcase the merits of the proposed algorithm under several existing adversarial attacks and distributional uncertainties.more » « less
-
Massive datasets are typically distributed geographically across multiple sites, where scalability, data privacy and integrity, as well as bandwidth scarcity typically discourage uploading these data to a central server. This has propelled the so-called federated learning framework where multiple workers exchange information with a server to learn a “centralized” model using data locally generated and/or stored across workers. This learning framework necessitates workers to communicate iteratively with the server. Although appealing for its scalability, one needs to carefully address the various data distribution shifts across workers, which degrades the performance of the learnt model. In this context, the distributionally robust optimization framework is considered here. The objective is to endow the trained model with robustness against adversarially manipulated input data, or, distributional uncertainties, such as mismatches between training and testing data distributions, or among datasets stored at different workers. To this aim, the data distribution is assumed unknown, and to land within a Wasserstein ball centered around the empirical data distribution. This robust learning task entails an infinite-dimensional optimization problem, which is challenging. Leveraging a strong duality result, a surrogate is obtained, for which a primal-dual algorithm is developed. Compared to classical methods, the proposed algorithm offers robustness with little computational overhead. Numerical tests using image datasets showcase the merits of the proposed algorithm under several existing adversarial attacks and distributional uncertainties.more » « less
-
Massive datasets are typically distributed geographically across multiple sites, where scalability, data privacy and integrity, as well as bandwidth scarcity typically discourage uploading these data to a central server. This has propelled the so-called federated learning framework where multiple workers exchange information with a server to learn a “centralized” model using data locally generated and/or stored across workers. This learning framework necessitates workers to communicate iteratively with the server. Although appealing for its scalability one needs to carefully address the various data distribution shifts across workers, which degrades the performance of the learnt model. In this context, the distributionally robust optimization framework is considered here. The objective is to endow the trained model with robustness against adversarially manipulated input data, or, distributional uncertainties, such as mismatches between training and testing data distributions, or among datasets stored at different workers. To this aim, the data distribution is assumed unknown, and to land within a Wasserstein ball centered around the empirical data distribution. This robust learning task entails an infinite-dimensional optimization problem, which is challenging. Leveraging a strong duality result, a surrogate is obtained, for which a primal-dual algorithm is developed. Compared to classical methods, the proposed algorithm offers robustness with little computational overhead. Numerical tests using image datasets showcase the merits of the proposed algorithm under several existing adversarial attacks and distributional uncertainties.more » « less
-
In this paper, we document our findings from previous research and literature related to adversarial examples and object detection. Artificial Intelligence (AI) is an increasingly powerful tool in various fields, particularly in image classification and object detection. As AI becomes more advanced, new methods to deceive machine learning models, such as adversarial patches, have emerged. These subtle modifications to images can cause AI models to misclassify objects, posing a significant challenge to their reliability. This research builds upon our earlier work by investigating how small patches affect object detection on YOLOv8. Last year, we explored patterns within images and their impact on model accuracy. This study extends that work by testing how adversarial patches, particularly those targeting animal patterns, affect YOLOv8's ability to accurately detect objects. We also explore how untrained patterns influence the model’s performance, aiming to identify weaknesses and improve the robustness of object detection systems.more » « less
An official website of the United States government

