skip to main content

Title: Two Year Cosmology Large Angular Scale Surveyor (CLASS) Observations: Long Timescale Stability Achieved with a Front-end Variable-delay Polarization Modulator at 40 GHz
Abstract The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales (2≲ ℓ ≲ 200) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the use of a variable-delay polarization modulator as the first optical element in each of the CLASS telescopes. Here, we develop a demodulation scheme used to extract the polarization timestreams from the CLASS data and apply this method to selected data from the first 2 yr of observations by the 40 GHz CLASS telescope. These timestreams are used to measure the 1/ f noise and temperature-to-polarization ( T → P ) leakage present in the CLASS data. We find a median knee frequency for the pair-differenced demodulated linear polarization of 15.12 mHz and a T → P leakage of <3.8 × 10 −4 (95% confidence) across the focal plane. We examine the sources of 1/ f noise present in the data and find the component of 1/ f due to atmospheric precipitable water vapor (PWV) has an amplitude of 203 ± 12 μ K RJ more » s for 1 mm of PWV when evaluated at 10 mHz; accounting for ∼17% of the 1/ f noise in the central pixels of the focal plane. The low levels of T → P leakage and 1/ f noise achieved through the use of a front-end polarization modulator are requirements for observing of the largest angular scales of the CMB polarization by the CLASS telescopes. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Award ID(s):
1654494 1636634
Publication Date:
NSF-PAR ID:
10315986
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
2
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    The Cosmology Large Angular Scale Surveyor (CLASS) is a telescope array observing the Cosmic Microwave Background (CMB) at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the CMB polarization on the largest angular scales to constrain the inflationary tensor-to-scalar ratio and the optical depth due to reionization. To achieve the long time-scale stability necessary for this measurement from the ground, CLASS utilizes a front-end, variable-delay polarization modulator on each telescope. Here we report on the improvements in stability afforded by front-end modulation using data across all four CLASS frequencies. Across one month of modulated linear polarization data in 2021, CLASS achieved median knee frequencies of 9.1, 29.1, 20.4, and 36.4 mHz for the 40, 90, 150, and 220 GHz observing bands. The knee frequencies are approximately an order of magnitude lower than achieved via CLASS pair-differencing orthogonal detector pairs without modulation.
  2. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert. CLASS is designed to measure "E-mode" (even parity) and "B-mode" (odd parity) polarization patterns in the Cosmic Microwave Background (CMB) over large angular scales with the aim of improving our understanding of inflation, reionization, and dark matter. CLASS is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (G). In these proceedings, we discuss the updated design and in-lab characterization of new 90 GHz detectors. The new detectors include design changes to the transition-edge sensor (TES) bolometer architecture, which aim to improve stability and optical efficiency. We assembled and tested four new detector wafers, to replace four modules of the W1 focal plane. These detectors were installed into the W1 telescope, and will achieve first light in the austral winter of 2022. We present electrothermal parameters and bandpass measurements from in-lab dark and optical testing. From in-lab dark tests, we also measure a median NEP of 12.3 aW√ s across all four wafers about the CLASS signal band, whichmore »is below the expected photon NEP of 32 aW√ s from the field. We therefore expect the new detectors to be photon noise limited.« less
  3. Zmuidzinas, Jonas ; Gao, Jian-Rong (Ed.)
    The Cosmology Large Angular Scale Surveyor (CLASS) telescope array surveys 75% of the sky from the Atacama desert in Chile at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the largest-angular scale (θ ≳ 1 ° ) CMB polarization with the aim of constraining the tensor-to-scalar ratio, r, measuring the optical depth to reionization, τ , to near the cosmic variance limit, and more. The CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic high frequency (150/220 GHz) telescopes have been observing since June 2016, May 2018, and September 2019, respectively. On-sky optical characterization of the 40 GHz instrument has been published. Here, we present preliminary on-sky measurements of the beams at 90, 150, and 220 GHz, and pointing stability of the 90 and 150/220 GHz telescopes. The average 90, 150, and 220 GHz beams measured from dedicated observations of Jupiter have full width at half maximum (FWHM) of 0.615±0.019° , 0.378±0.005° , and 0.266 ± 0.008° , respectively. Telescope pointing variations are within a few % of the beam FWHM.
  4. Abstract

    We report on the design and performance of the Bicep3instrument and its first three-year data set collected from 2016 to 2018. Bicep3is a 52 cm aperture refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95 GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor bolometers. The receiver first demonstrated new technologies such as large-diameter alumina optics, Zotefoam infrared filters, and flux-activated SQUIDs, allowing ∼10× higher optical throughput compared to theKeckdesign. Bicep3achieved instrument noise equivalent temperatures of 9.2, 6.8, and 7.1μKCMBsand reached StokesQandUmap depths of 5.9, 4.4, and 4.4μK arcmin in 2016, 2017, and 2018, respectively. The combined three-year data set achieved a polarization map depth of 2.8μK arcmin over an effective area of 585 square degrees, which is the deepest CMB polarization map made to date at 95 GHz.

  5. One of the top priorities in observational astronomy is the direct imaging and characterization of extrasolar planets (exoplanets) and planetary systems. Direct images of rocky exoplanets are of particular interest in the search for life beyond the Earth, but they tend to be rather challenging targets since they are orders-of-magnitude dimmer than their host stars and are separated by small angular distances that are comparable to the classicalλ<#comment/>/Ddiffraction limit, even for the coming generation of 30 m class telescopes. Current and planned efforts for ground-based direct imaging of exoplanets combine high-order adaptive optics (AO) with a stellar coronagraph observing at wavelengths ranging from the visible to the mid-IR. The primary barrier to achieving high contrast with current direct imaging methods is quasi-static speckles, caused largely by non-common path aberrations (NCPAs) in the coronagraph optical train. Recent work has demonstrated that millisecond imaging, which effectively “freezes” the atmosphere’s turbulent phase screens, should allow the wavefront sensor (WFS) telemetry to be used as a probe of the optical system to measure NCPAs. Starting with a realistic model of a telescope with an AO system and a stellar coronagraph, this paper provides simulations of several closely related regression models that take advantagemore »of millisecond telemetry from the WFS and coronagraph’s science camera. The simplest regression model, called the naïve estimator, does not treat the noise and other sources of information loss in the WFS. Despite its flaws, in one of the simulations presented herein, the naïve estimator provides a useful estimate of an NCPA of∼<#comment/>0.5radian RMS (≈<#comment/>λ<#comment/>/13), with an accuracy of∼<#comment/>0.06radian RMS in 1 min of simulated sky time on a magnitude 8 star. Thebias-corrected estimatorgeneralizes the regression model to account for the noise and information loss in the WFS. A simulation of the bias-corrected estimator with 4 min of sky time included an NCPA of∼<#comment/>0.05radian RMS (≈<#comment/>λ<#comment/>/130) and an extended exoplanet scene. The joint regression of the bias-corrected estimator simultaneously achieved an NCPA estimate with an accuracy of∼<#comment/>5×<#comment/>10−<#comment/>3radian RMS and an estimate of the exoplanet scene that was free of the self-subtraction artifacts typically associated with differential imaging. The5σ<#comment/>contrast achieved by imaging of the exoplanet scene was∼<#comment/>1.7×<#comment/>10−<#comment/>4at a distance of3λ<#comment/>/Dfrom the star and∼<#comment/>2.1×<#comment/>10−<#comment/>5at10λ<#comment/>/D. These contrast values are comparable to the very best on-sky results obtained from multi-wavelength observations that employ both angular differential imaging (ADI) and spectral differential imaging (SDI). This comparable performance is despite the fact that our simulations are quasi-monochromatic, which makes SDI impossible, nor do they have diurnal field rotation, which makes ADI impossible. The error covariance matrix of the joint regression shows substantial correlations in the exoplanet and NCPA estimation errors, indicating that exoplanet intensity and NCPA need to be estimated self-consistently to achieve high contrast.

    « less