skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A kd-tree-accelerated hybrid data-driven/model-based approach for poroelasticity problems with multi-fidelity multi-physics data
Award ID(s):
1846875
PAR ID:
10315995
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Computer Methods in Applied Mechanics and Engineering
Volume:
382
Issue:
C
ISSN:
0045-7825
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Exploratory data analysis can uncover interesting data insights from data. Current methods utilize interestingness measures designed based on system designers' perspectives, thus inherently restricting the insights to their defined scope. These systems, consequently, may not adequately represent a broader range of user interests. Furthermore, most existing approaches that formulate interestingness measure are rule-based, which makes them inevitably brittle and often requires holistic re-design when new user needs are discovered. This paper presents a data-driven technique for deriving an interestingness measure that learns from annotated data. We further develop an innovative annotation algorithm that significantly reduces the annotation cost, and an insight synthesis algorithm based on the Markov Chain Monte Carlo method for efficient discovery of interesting insights. We consolidate these ideas into a system. Our experimental outcomes and user studies demonstrate that DAISY can effectively discover a broad range of interesting insights, thereby substantially advancing the current state-of-the-art. 
    more » « less
  2. Abstract Current biotechnologies can simultaneously measure multiple high-dimensional modalities (e.g., RNA, DNA accessibility, and protein) from the same cells. A combination of different analytical tasks (e.g., multi-modal integration and cross-modal analysis) is required to comprehensively understand such data, inferring how gene regulation drives biological diversity and functions. However, current analytical methods are designed to perform a single task, only providing a partial picture of the multi-modal data. Here, we present UnitedNet, an explainable multi-task deep neural network capable of integrating different tasks to analyze single-cell multi-modality data. Applied to various multi-modality datasets (e.g., Patch-seq, multiome ATAC + gene expression, and spatial transcriptomics), UnitedNet demonstrates similar or better accuracy in multi-modal integration and cross-modal prediction compared with state-of-the-art methods. Moreover, by dissecting the trained UnitedNet with the explainable machine learning algorithm, we can directly quantify the relationship between gene expression and other modalities with cell-type specificity. UnitedNet is a comprehensive end-to-end framework that could be broadly applicable to single-cell multi-modality biology. This framework has the potential to facilitate the discovery of cell-type-specific regulation kinetics across transcriptomics and other modalities. 
    more » « less