skip to main content


Title: Recent development of polyimides: Synthesis, processing, and application in gas separation
Abstract

High‐performance polymers have been concomitant with advanced technology for half a century. With the advancement of synthetic chemistry, the recent development of high‐performance polymers has provided superior properties and enabled wide applications. This article reviews recent research progress in aromatic high‐performance polymers. Particularly, we focus on the synthesis and processing of polyimides, as well as the application in gas separation membranes. We begin with a brief introduction to highlight important history and physiochemical characteristics of polyimides. Then, we review the various synthesis methods, followed by recent advances for improving processability. Finally, we evaluate the use of high‐performance polymers in gas separation membranes with focus given to the key issues of plasticization and aging. Overall, the information presented herein provides an up‐to‐date overview of high‐performance polymers, polyimides particularly, and serves as a guide for further research involving the applications in membrane technologies.

 
more » « less
Award ID(s):
1752611
NSF-PAR ID:
10450885
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
59
Issue:
11
ISSN:
2642-4150
Format(s):
Medium: X Size: p. 943-962
Size(s):
["p. 943-962"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polyimides (PI) synthesized from 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) with various diamines have been frequently studied as gas separation membranes. The use of 6FDA in polyimides creates a bent structure than can increase fractional free volume (FFV) and gas permeability. Here, we demonstrate that 6FDA is also a useful building block for PI‐ionene materials, which contain cations directly within the polymer backbone. These new 6FDA‐containing PI‐ionenes were combined with several different imidazolium ionic liquids (ILs) to form thin membranes. The thermal properties of all the derivatives were investigated to determine the relationship between regiochemistry and degradation as well as the intermolecular forces that are present within these structures. The gas separation properties of these 6FDA‐containing PI‐ionene + IL materials were investigated, showing modest CO2permeabilities similar to other polyimide‐ionenes and CO2/CH4and CO2/N2permselectivities that were relatively higher than other polyimide‐ionenes.

     
    more » « less
  2. Abstract

    Mixed matrix membranes (MMMs) comprising size‐sieving fillers dispersed in polymers exhibit diffusivity selectivity and may surpass the upper bound for gas separation, but their performance is limited by defects at the polymer/filler interface. Herein, a fundamentally different approach employing a highly sorptive filler that is inherently less sensitive to interfacial defects is reported. Palladium nanoparticles with extremely high H2sorption are dispersed in polybenzimidazole at loadings near the percolation threshold, which increases both H2permeability and H2/CO2selectivity. Performance of these MMMs surpasses the state‐of‐the‐art upper bound for H2/CO2separation with polymer‐based membranes. The success of these sorption‐enhanced MMMs for H2/CO2separation may launch a new research paradigm that taps the enormous knowledge of affinities between gases and nanomaterials to design MMMs for a wide variety of gas separations.

     
    more » « less
  3. Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers with highly tuneable structures and functionalities. COFs have been proposed as ideal materials for applications in the energy-intensive field of molecular separation due to their notable intrinsic features such as low density, exceptional stability, high surface area, and readily adjustable pore size and chemical environment. This review attempts to highlight the key advancements made in the synthesis of COFs for diverse separation applications such as water treatment or the separation of gas mixtures and organic molecules, including chiral and isomeric compounds. Methods proposed for the fabrication of COF-based columns and continuous membranes for practical applications are also discussed in detail. Finally, a perspective regarding the remaining challenges and future directions for COF research in the field of separation has also been presented. 
    more » « less
  4. Abstract

    Mixed‐matrix membranes (MMMs) have been studied widely in the field of gas separation due to their potential to overcome performance barriers found in traditional polymeric membranes. Most polymeric membranes exhibit a trade‐off between permeation and selectivity, which has limited their development in many challenging separation applications. One solution to this issue utilizes the introduction of fillers into the polymer matrix to produce MMMs. Out of the many different fillers, metal–organic frameworks stand out as a promising candidate due to their highly tunable structure, molecular sieving effect, and superior compatibility with the polymer matrix. This review will provide an in‐depth look into the basic mechanisms of MMMs for gas separation and different approaches to model the permeation of gases through the membrane. In addition, challenges facing the field and recent research trends for MMMs will be discussed as well as their many applications for different gas separations. Finally, some insight on the future direction for MMMs will be covered, focusing on many intriguing opportunities and challenges that must be further explored to advance this technology.

     
    more » « less
  5. Abstract

    Porous graphene and other atomically thin 2D materials are regarded as highly promising membrane materials for high‐performance gas separations due to their atomic thickness, large‐scale synthesizability, excellent mechanical strength, and chemical stability. When these atomically thin materials contain a high areal density of gas‐sieving nanoscale pores, they can exhibit both high gas permeances and high selectivities, which is beneficial for reducing the cost of gas‐separation processes. Here, recent modeling and experimental advances in nanoporous atomically thin membranes for gas separations is discussed. The major challenges involved, including controlling pore size distributions, scaling up the membrane area, and matching theory with experimental results, are also highlighted. Finally, important future directions are proposed for real gas‐separation applications of nanoporous atomically thin membranes.

     
    more » « less