skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Softening of Temperate Ice by Interstitial Water
Ice at depth in ice-stream shear margins is thought to commonly be temperate, with interstitial meltwater that softens ice. Models that include this softening extrapolate results of a single experimental study in which ice effective viscosity decreased by a factor of ∼3 over water contents of ∼0.01–0.8%. Modeling indicates this softening by water localizes strain in shear margins and through shear heating increases meltwater at the bed, enhancing basal slip. To extend data to higher water contents, we shear lab-made ice in confined compression with a large ring-shear device. Ice rings with initial mean grain sizes of 2–4 mm are kept at the pressure-melting temperature and sheared at controlled rates with peak stresses of ∼0.06–0.20 MPa, spanning most of the estimated shear-stress range in West Antarctic shear margins. Final mean grain sizes are 8–13 mm. Water content is measured by inducing a freezing front at the ice-ring edges, tracking its movement inward with thermistors, and fitting the data with solutions of the relevant Stefan problem. Results indicate two creep regimes, below and above a water content of ∼0.6%. Comparison of effective viscosity values in secondary creep with those of tertiary creep from the earlier experimental study indicate that for water contents of 0.2–0.6%, viscosity in secondary creep is about twice as sensitive to water content than for ice sheared to tertiary creep. Above water contents of 0.6%, viscosity values in secondary creep are within 25% of those of tertiary creep, suggesting a stress-limiting mechanism at water contents greater than 0.6% that is insensitive to ice fabric development in tertiary creep. At water contents of ∼0.6–1.7%, effective viscosity is independent of water content, and ice is nearly linear-viscous. Minimization of intercrystalline stress heterogeneity by grain-scale melting and refreezing at rates that approach an upper bound as grain-boundary water films thicken might account for the two regimes.  more » « less
Award ID(s):
1643120 1643123
PAR ID:
10316215
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
9
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To better constrain meltwater transport and ice viscosity in temperate glaciers, particularly in ice stream shear margins, we use a custom permeameter to study the untested model relationship between the permeability of temperate ice and its liquid water content. The permeability of lab-made ice of two mean grain diameters (1.8 and 4.2 mm) is measured, and water content is controlled with the ice salinity and measured calorimetrically. Fluorescein dye is added to through-flowing, chilled water to highlight flow pathways through the ice after experiments. As predicted by a simple model, permeability increases with approximately the square of the water content and by about three orders of magnitude across water contents of 0.1–4.4%. However, permeability values are less than those of the model by average factors of 2.6 and 4.1 for the finer and coarser ice, respectively. This discrepancy is likely due to tortuous, truncated or air-clogged veins. The order-of-magnitude agreement between measured and modeled values may indicate that reduced permeability from these factors is nearly compensated by preferential flow in oversized veins that are isolated or arborescent. Both kinds of preferred flow pathways are observed but the latter only in fine-grained ice at water contents > 2%. 
    more » « less
  2. Accurately modeling the deformation of temperate glacier ice, which is at its pressure-melting temperature and contains liquid water at grain boundaries, is essential for predicting ice sheet discharge to the ocean and associated sea-level rise. Central to such modeling is Glen’s flow law, in which strain rate depends on stress raised to a power ofn= 3 to 4. In sharp contrast to this nonlinearity, we found by conducting large-scale, shear-deformation experiments that temperate ice is linear-viscous (n ≈1.0) over common ranges of liquid water content and stress expected near glacier beds and in ice-stream margins. This linearity is likely caused by diffusive pressure melting and refreezing at grain boundaries and could help to stabilize modeled responses of ice sheets to shrinkage-induced stress increases. 
    more » « less
  3. Abstract. The Greenland and Antarctic ice sheets are covered in a layer of porous firn. Knowledge of firn structure improves our understanding of ice sheet mass balance, supra- and englacial hydrology, and ice core paleoclimate records. While macroscale firn properties, such as firn density, are relatively easy to measure in the field or lab, more intensive measurements of microstructural properties are necessary to reduce uncertainty in remote sensing observations of mass balance, model meltwater infiltration, and constrain ice age – gas age differences in ice cores. Additionally, as the duration and extent of surface melting increases, refreezing meltwater will greatly alter firn structure. Field observations of firn grain size and ice layer stratigraphy are required to test and validate physical models that simulate the ice-sheet-wide evolution of the firn layer. However, visually measuring grain size and ice layer distributions is tedious, is time-consuming, and can be subjective depending on the method. Here we demonstrate a method to systematically map firn core grain size and ice layer stratigraphy using a near-infrared hyperspectral imager (NIR-HSI; 900–1700 nm). We scanned 14 firn cores spanning ∼ 1000 km across western Greenland’s percolation zone with the NIR-HSI mounted on a linear translation stage in a cold laboratory. We leverage the relationship between effective grain size, a measure of NIR light absorption by firn grains, and NIR reflectance to produce high-resolution (0.4 mm) maps of effective grain size and ice layer stratigraphy. We show the NIR-HSI reproduces visually identified ice layer stratigraphy and infiltration ice content across all cores. Effective grain sizes change synchronously with traditionally measured grain radii with depth, although effective grains in each core are 1.5× larger on average, which is largely related to the differences in measurement techniques. To demonstrate the utility of the firn stratigraphic maps produced by the NIR-HSI, we track the 2012 melt event across the transect and assess its impact on deep firn structure by quantifying changes to infiltration ice content and grain size. These results indicate that NIR-HSI firn core analysis is a robust technique that can document deep and long-lasting changes to the firn column from meltwater percolation while quickly and accurately providing detailed firn stratigraphy datasets necessary for firn research applications. 
    more » « less
  4. Abstract In this article, we investigate the creep mechanism of clay at the nanoscale. We conduct the molecular dynamics (MD) modeling of clay samples consisting of hexagonal particles under compression and shear. The MD simulations include oedometer creep, shear creep, direct shear tests, and stress relaxation. The numerical results show that the nanoscale creep mechanism of clay is related to particle rotation, translation, and stacking under different loading conditions. The clay sample under creep shows two types of particle arrangements, that is, the shifted face‐to‐face configuration and the face‐to‐edge configuration. The orientation angle of clay particles is computed to track the rotation of individual particles due to creep. The fabric variation of the clay under creep is characterized by the dihedral angle between the basal particle plane and the x‐y plane and the order parameter. It is found that the factors affecting the microstructure variation of the clay aggregate include stress levels, loading rates, and particle sizes. In the nanoscale shear creep test, the creep process comprises three stages, that is, primary, secondary, and tertiary. The microstructure change during creep depends on the initial alignment of clay particles. The clay creep under a more significant stress level results in a more considerable order parameter and a more orientated clay structure. 
    more » « less
  5. Abstract Glacier sliding has major environmental consequences, but friction caused by debris in the basal ice of glaciers is seldom considered in sliding models. To include such friction, divergent hypotheses for clast‐bed contact forces require testing. In experiments we rotate an ice ring (outside diameter = 0.9 m), with and without isolated till clasts, over a smooth rock bed. Ice is kept at its pressure‐melting temperature, and meltwater drains along a film at the bed to atmospheric pressure at its edges. The ice pressure or bed‐normal component of ice velocity is controlled, while bed shear stress is measured. Results with debris‐free ice indicate friction coefficients < 0.01. Shear stresses caused by clasts in ice are independent of ice pressure. This independence indicates that with increases in ice pressure the water pressure in cavities observed beneath clasts increases commensurately to allow drainage of cavities into the melt film, leaving clast‐bed contact forces unaffected. Shear stresses, instead, are proportional to bed‐normal ice velocity. Cavities and the absence of regelation ice indicate that, unlike model formulations, regelation past clasts does not control contact forces. Alternatively, heat from the bed melts ice above clasts, creating pressure gradients in adjacent meltwater films that cause contact forces to depend on bed‐normal ice velocity. This model can account for observations if rock friction predicated on Hertzian clast‐bed contacts is assumed. Including debris‐bed friction in glacier sliding models will require coupling the ice velocity field near the bed to contact forces rather than imposing a pressure‐based friction rule. 
    more » « less