- Award ID(s):
- 1942763
- NSF-PAR ID:
- 10316232
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 7
- Issue:
- 49
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Viral infections are a major global health issue, but no current method allows rapid, direct, and ultrasensitive quantification of intact viruses with the ability to inform infectivity, causing misdiagnoses and spread of the viruses. Here, we report a method for direct detection and differentiation of infectious from noninfectious human adenovirus and SARS-CoV-2, as well as from other virus types, without any sample pretreatment. DNA aptamers are selected from a DNA library to bind intact infectious, but not noninfectious, virus and then incorporated into a solid-state nanopore, which allows strong confinement of the virus to enhance sensitivity down to 1 pfu/ml for human adenovirus and 1 × 10 4 copies/ml for SARS-CoV-2. Applications of the aptamer-nanopore sensors in different types of water samples, saliva, and serum are demonstrated for both enveloped and nonenveloped viruses, making the sensor generally applicable for detecting these and other emerging viruses of environmental and public health concern.more » « less
-
Abstract SARS-CoV-2, especially B.1.1.529/omicron and its sublineages, continues to mutate to evade monoclonal antibodies and antibodies elicited by vaccination. Affinity-enhanced soluble ACE2 (sACE2) is an alternative strategy that works by binding the SARS-CoV-2 S protein, acting as a ‘decoy’ to block the interaction between the S and human ACE2. Using a computational design strategy, we designed an affinity-enhanced ACE2 decoy,
FLIF , that exhibited tight binding to SARS-CoV-2 delta and omicron variants. Our computationally calculated absolute binding free energies (ABFE) between sACE2:SARS-CoV-2 S proteins and their variants showed excellent agreement to binding experiments.FLIF displayed robust therapeutic utility against a broad range of SARS-CoV-2 variants and sarbecoviruses, and neutralized omicron BA.5 in vitro and in vivo. Furthermore, we directly compared the in vivo therapeutic efficacy of wild-type ACE2 (non-affinity enhanced ACE2) againstFLIF . A few wild-type sACE2 decoys have shown to be effective against early circulating variants such as Wuhan in vivo. Our data suggest that moving forward, affinity-enhanced ACE2 decoys likeFLIF may be required to combat evolving SARS-CoV-2 variants. The approach described herein emphasizes how computational methods have become sufficiently accurate for the design of therapeutics against viral protein targets. Affinity-enhanced ACE2 decoys remain highly effective at neutralizing omicron subvariants. -
Human adenoviruses are large (150 MDa) doubled-stranded DNA viruses that cause respiratory infections. These viruses are particularly pathogenic in healthy and immune-compromised individuals, and currently, no adenovirus vaccine is available for the general public. The purpose of this review is to describe (i) the epidemiology and pathogenicity of human adenoviruses, (ii) the biological role of adenovirus vectors in gene therapy applications, and (iii) the potential role of exosomes in adenoviral infections.more » « less
-
Low, Nicola (Ed.)Background While booster vaccinations clearly reduce the risk of severe Coronavirus Disease 2019 (COVID-19) and death, the impact of boosters on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections has not been fully characterized: Doing so requires understanding their impact on asymptomatic and mildly symptomatic infections that often go unreported but nevertheless play an important role in spreading SARS-CoV-2. We sought to estimate the impact of COVID-19 booster doses on SARS-CoV-2 infections in a vaccinated population of young adults during an Omicron BA.1-predominant period. Methods and findings We implemented a cohort study of young adults in a college environment (Cornell University’s Ithaca campus) from a period when Omicron BA.1 was the predominant SARS-CoV-2 variant on campus (December 5 to December 31, 2021). Participants included 15,800 university students who completed initial vaccination series with vaccines approved by the World Health Organization for emergency use, were enrolled in mandatory at-least-weekly surveillance polymerase chain reaction (PCR) testing, and had no positive SARS-CoV-2 PCR test within 90 days before the start of the study period. Robust multivariable Poisson regression with the main outcome of a positive SARS-CoV-2 PCR test was performed to compare those who completed their initial vaccination series and a booster dose to those without a booster dose. A total of 1,926 unique SARS-CoV-2 infections were identified in the study population. Controlling for sex, student group membership, date of completion of initial vaccination series, initial vaccine type, and temporal effect during the study period, our analysis estimates that receiving a booster dose further reduces the rate of having a PCR-detected SARS-CoV-2 infection relative to an initial vaccination series by 56% (95% confidence interval [42%, 67%], P < 0.001). While most individuals had recent booster administration before or during the study period (a limitation of our study), this result is robust to the assumed delay over which a booster dose becomes effective (varied from 1 day to 14 days). The mandatory active surveillance approach used in this study, under which 86% of the person-days in the study occurred, reduces the likelihood of outcome misclassification. Key limitations of our methodology are that we did not have an a priori protocol or statistical analysis plan because the analysis was initially done for institutional research purposes, and some analysis choices were made after observing the data. Conclusions We observed that boosters are effective, relative to completion of initial vaccination series, in further reducing the rate of SARS-CoV-2 infections in a college student population during a period when Omicron BA.1 was predominant; booster vaccinations for this age group may play an important role in reducing incidence of COVID-19.more » « less
-
Abstract The COVID‐19 pandemic continues to be a severe threat to human health, especially due to current and emerging SARS‐CoV‐2 variants with potential to escape humoral immunity developed after vaccination or infection. The development of broadly neutralizing antibodies that engage evolutionarily conserved epitopes on coronavirus spike proteins represents a promising strategy to improve therapy and prophylaxis against SARS‐CoV‐2 and variants thereof. Herein, a facile multivalent engineering approach is employed to achieve large synergistic improvements in the neutralizing activity of a SARS‐CoV‐2 cross‐reactive nanobody (VHH‐72) initially generated against SARS‐CoV. This synergy is epitope specific and is not observed for a second high‐affinity nanobody against a non‐conserved epitope in the receptor‐binding domain. Importantly, a hexavalent VHH‐72 nanobody retains binding to spike proteins from multiple highly transmissible SARS‐CoV‐2 variants (B.1.1.7 and B.1.351) and potently neutralizes them. Multivalent VHH‐72 nanobodies also display drug‐like biophysical properties, including high stability, high solubility, and low levels of non‐specific binding. The unique neutralizing and biophysical properties of VHH‐72 multivalent nanobodies make them attractive as therapeutics against SARS‐CoV‐2 variants.