skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Corticospinal Excitability during a Perspective Taking Task as Measured by TMS-Induced Motor Evoked Potentials
Only by understanding the ability to take a third-person perspective can we begin to elucidate the neural processes responsible for one’s inimitable conscious experience. The current study examined differences in hemispheric laterality during a first-person perspective (1PP) and third-person perspective (3PP) taking task, using transcranial magnetic stimulation (TMS). Participants were asked to take either the 1PP or 3PP when identifying the number of spheres in a virtual scene. During this task, single-pulse TMS was delivered to the motor cortex of both the left and right hemispheres of 10 healthy volunteers. Measures of TMS-induced motor-evoked potentials (MEPs) of the contralateral abductor pollicis brevis (APB) were employed as an indicator of lateralized cortical activation. The data suggest that the right hemisphere is more important in discriminating between 1PP and 3PP. These data add a novel method for determining perspective taking and add to the literature supporting the role of the right hemisphere in meta representation.  more » « less
Award ID(s):
1909824
PAR ID:
10316265
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Brain Sciences
Volume:
11
Issue:
4
ISSN:
2076-3425
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Studying electroencephalography (EEG) in response to transcranial magnetic stimulation (TMS) is gaining popularity for investigating the dynamics of complex neural architecture in the brain. For example, the primary motor cortex (M1) executes voluntary movements by complex connections with other associated subnetworks. To understand these connections better, we analyzed EEG signal response to TMS at left M1 from schizophrenia patients and healthy controls and in contrast with resting state EEG recording. After removing artifacts from EEG, we conducted 2D to 3D sLORETA conversion, a well-established source localization method, for estimating signal strength of 68 source dipoles or cortical regions inside the brain. Next, we studied dynamic connectivity by computing time-evolving spatial coherence of 2278 (=68*(68-1)/2) pairs of cortical regions, with sliding window technique of 200ms window size and 20ms shift over 1sec long data. Pairs with consistent coherence (coherence>0.8 during 200+ sliding windows of patients and controls combined) were chosen for identifying stable networks. For example, we found that during the resting state, precuneus was steadily coherent with middle and superior temporal gyrus in the left hemisphere in both patient and controls. Their connectivity pattern over the sliding windows significantly differed between patients and controls (pvalue<0.05). Whereas for M1, the same was true for two other coherent pairs namely, superamarginal gyrus with lateral occipital gyrus in right hemisphere and medial orbitofrontal gyrus with fusiform in left hemisphere. The TMS-EEG dynamic connectivity results can help to differentiate patient and normal subjects and also help to better understand the brain architecture and mechanisms. 
    more » « less
  2. Spatial perspective taking is an essential cognitive ability that enables people to imagine how an object or scene would appear from a perspective different from their current physical viewpoint. This process is fundamental for successful navigation, especially when people utilize navigational aids (e.g., maps) and the information provided is shown from a different perspective. Research on spatial perspective taking is primarily conducted using paper-pencil tasks or computerized figural tasks. However, in daily life, navigation takes place in a three-dimensional (3D) space and involves movement of human bodies through space, and people need to map the perspective indicated by a 2D, top down, external representation to their current 3D surroundings to guide their movements to goal locations. In this study, we developed an immersive viewpoint transformation task (iVTT) using ambulatory virtual reality (VR) technology. In the iVTT, people physically walked to a goal location in a virtual environment, using a first-person perspective, after viewing a map of the same environment from a top-down perspective. Comparing this task with a computerized version of a popular paper-and-pencil perspective taking task (SOT: Spatial Orientation Task), the results indicated that the SOT is highly correlated with angle production error but not distance error in the iVTT. Overall angular error in the iVTT was higher than in the SOT. People utilized intrinsic body axes (front/back axis or left/right axis) similarly in the SOT and the iVTT, although there were some minor differences. These results suggest that the SOT and the iVTT capture common variance and cognitive processes, but are also subject to unique sources of error caused by different cognitive processes. The iVTT provides a new immersive VR paradigm to study perspective taking ability in a space encompassing human bodies, and advances our understanding of perspective taking in the real world. 
    more » « less
  3. null (Ed.)
    Cortical representations expand during skilled motor learning. We studied a unique model of motor learning with cellular phone texting, where the thumbs are used exclusively to interact with the device and the prominence of use can be seen where 3200 text messages are exchanged a month in the 18–24 age demographic. The purpose of the present study was to examine the motor cortex representation and input–output (IO) recruitment curves of the abductor pollicis brevis (APB) muscle of the thumb and the ADM muscle with transcranial magnetic stimulation (TMS), relative to individuals’ texting abilities and short-term texting practice. Eighteen individuals performed a functional texting task (FTT) where we scored their texting speed and accuracy. TMS was then used to examine the cortical volumes and areas of activity in the two muscles and IO curves were constructed to measure excitability. Subjects also performed a 10-min practice texting task, after which we repeated the cortical measures. There were no associations between the cortical measures and the FTT scores before practice. However, after practice the APB cortical map expanded and excitability increased, whereas the ADM map constricted. The increase in the active cortical areas in APB correlated with the improvement in the FTT score. Based on the homogenous group of subjects that were already good at texting, we conclude that the cortical representations and excitability for the thumb muscle were already enlarged and more receptive to changes with short-term practice, as noted by the increase in FTT performance after 10-min of practice. 
    more » « less
  4. null (Ed.)
    How do young children develop a concept of equity? Infants prefer dividing resources equally and expect others to make such distributions. Between the ages of 3–8, children begin to exhibit preferences to avoid inequitable outcomes in their distributions, dividing resources unequally if the result of that distribution is a more equitable outcome. Four studies investigated children’s developing preferences for generating equitable distributions, focusing on the mechanisms for this development. Children were presented with two characters with different amount of resources, and then a third character who will distribute more resources to them. Three- to 8-year-olds were asked whether the third character should give an equal number of resources to the recipients, preserving the inequity, or an unequal number to them, creating an equitable outcome. Starting at age 7, children showed a preference for equitable distributions (Study 1, N = 144). Studies 2a (N = 72) and 2b (N = 48) suggest that this development is independent of children’s numerical competence. When asked to take the perspective of the recipient with fewer resources, 3- to 6-year-olds were more likely to make an equitable distribution (Study 3, N = 122). These data suggest that social perspective taking underlies children’s prosocial actions, and supports the hypothesis that their spontaneous capacity to take others’ perspectives develops during the early elementary-school years. 
    more » « less
  5. Abstract How do young children develop a concept of equity? Infants prefer dividing resources equally and expect others to make such distributions. Between the ages of 3–8, children begin to exhibit preferences to avoid inequitable outcomes in their distributions, dividing resources unequally if the result of that distribution is a more equitable outcome. Four studies investigated children’s developing preferences for generating equitable distributions, focusing on the mechanisms for this development. Children were presented with two characters with different amount of resources, and then a third character who will distribute more resources to them. Three- to 8-year-olds were asked whether the third character should give an equal number of resources to the recipients, preserving the inequity, or an unequal number to them, creating an equitable outcome. Starting at age 7, children showed a preference for equitable distributions (Study 1, N = 144). Studies 2a (N = 72) and 2b (N = 48) suggest that this development is independent of children’s numerical competence. When asked to take the perspective of the recipient with fewer resources, 3- to 6-year-olds were more likely to make an equitable distribution (Study 3, N = 122). These data suggest that social perspective taking underlies children’s prosocial actions, and supports the hypothesis that their spontaneous capacity to take others’ perspectives develops during the early elementary-school years. 
    more » « less