skip to main content


Title: Multi-level trading community formation and hybrid trading network construction in local energy market
Award ID(s):
1939124
NSF-PAR ID:
10316619
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Applied Energy
Volume:
285
Issue:
C
ISSN:
0306-2619
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tiered distributed computing systems, where components run in Internet-of-things devices, in edge computers, and in the cloud, introduce unique difficulties in maintaining consistency of shared data while ensuring availability. A major source of difficulty is the highly variable network latencies that applications must deal with. It is well known in distributed computing that when network latencies rise sufficiently, one or both of consistency and availability must be sacrificed. This paper quantifies consistency and availability and gives an algebraic relationship between these quantities and network latencies. The algebraic relation is linear in a max-plus algebra and supports heterogeneous networks, where the communication latency between 2 components may differ from the latency between another 2 components. We show how to make use of this algebraic relation to guide design, enabling software designers to specify consistency and availability requirements, and to derive from those the requirements on network latencies. We show how to design systems to fail in predictable ways when the network latency requirements are violated, by choosing to sacrifice either consistency or availability.

     
    more » « less
  2. Blockchain is a decentralized, digital, and distributed ledger which allows transparent and secure information sharing among the peer-to-peer network. It eliminates the need for a centralized trusted party and, though it was introduced as the backbone technology for cryptocurrencies but has proved to be a promising and revolutionary technology for almost all global industries. The application of blockchain technology in the energy sector proposes a paradigm of solutions to problems of different levels of complexity in the traditional energy ecosystem. Extensive research has been proposed to exploit the inherent benefits of blockchain technology for the integration of distributed energy sources and facilitate peer-to-peer energy trading. This paper proposes a blockchain-based architecture to facilitate secure and decentralized energy trading generated from renewable energy sources. The solution utilizes the Ethereum blockchain and Smart Contracts for energy trading among the members of a small community without any trusted third entity and adopts features to achieve data integrity and confidentiality, and user identity privacy. 
    more » « less
  3. null (Ed.)