skip to main content


Title: On Imitation Learning of Linear Control Policies: Enforcing Stability and Robustness Constraints via LMI Conditions
When applying imitation learning techniques to fit a policy from expert demonstrations, one can take advantage of prior stability/robustness assumptions on the expert's policy and incorporate such control-theoretic prior knowledge explicitly into the learning process. In this paper, we formulate the imitation learning of linear policies as a constrained optimization problem, and present efficient methods which can be used to enforce stability and robustness constraints during the learning processes. Specifically, we show that one can guarantee the closed-loop stability and robustness by posing linear matrix inequality (LMI) constraints on the fitted policy. Then both the projected gradient descent method and the alternating direction method of multipliers (ADMM) method can be applied to solve the resultant constrained policy fitting problem. Finally, we provide numerical results to demonstrate the effectiveness of our methods in producing linear polices with various stability and robustness guarantees.  more » « less
Award ID(s):
2048168
PAR ID:
10316663
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 American Control Conference (ACC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we propose a novel network architecture for visual imitation learning that exploits neural radiance fields (NeRFs) and key-point correspondence for self-supervised visual motor policy learning. The proposed network architecture incorporates a dynamic system output layer for policy learning. Combining the stability and goal adaption properties of dynamic systems with the robustness of keypoint-based correspondence yields a policy that is invariant to significant clutter, occlusions, lighting conditions changes, and spatial variations in goal configurations. Experiments on multiple manipulation tasks show that our method outperforms comparable visual motor policy learning methods on both in-distribution and out-of-distribution scenarios when using a small number of training samples. 
    more » « less
  2. We consider the imitation learning problem of learning a policy in a Markov Decision Process (MDP) setting where the reward function is not given, but demonstrations from experts are available. Although the goal of imitation learning is to learn a policy that produces behaviors nearly as good as the experts’ for a desired task, assumptions of consistent optimality for demonstrated behaviors are often violated in practice. Finding a policy that is distributionally robust against noisy demonstrations based on an adversarial construction potentially solves this problem by avoiding optimistic generalizations of the demonstrated data. This paper studies Distributionally Robust Imitation Learning (DRoIL) and establishes a close connection between DRoIL and Maximum Entropy Inverse Reinforcement Learning. We show that DRoIL can be seen as a framework that maximizes a generalized concept of entropy. We develop a novel approach to transform the objective function into a convex optimization problem over a polynomial number of variables for a class of loss functions that are additive over state and action spaces. Our approach lets us optimize both stationary and non-stationary policies and, unlike prevalent previous methods, it does not require repeatedly solving an inner reinforcement learning problem. We experimentally show the significant benefits of DRoIL’s new optimization method on synthetic data and a highway driving environment. 
    more » « less
  3. Existing computer analytic methods for the microgrid system, such as reinforcement learning (RL) methods, suffer from a long-term problem with the empirical assumption of the reward function. To alleviate this limitation, we propose a multi-virtual-agent imitation learning (MAIL) approach to learn the dispatch policy under different power supply interrupted periods. Specifically, we utilize the idea of generative adversarial imitation learning method to do direct policy mapping, instead of learning from manually designed reward functions. Multi-virtual agents are used for exploring the relationship of uncertainties and corresponding actions in different microgrid environments in parallel. With the help of a deep neural network, the proposed MAIL approach can enhance robust ability by minimizing the maximum crossover discriminators to cover more interrupted cases. Case studies show that the proposed MAIL approach can learn the dispatch policies as well as the expert method and outperform other existing RL methods. 
    more » « less
  4. Wallach, H (Ed.)
    We study the problem of programmatic reinforcement learning, in which policies are represented as short programs in a symbolic language. Programmatic policies can be more interpretable, generalizable, and amenable to formal verification than neural policies; however, designing rigorous learning approaches for such policies remains a challenge. Our approach to this challenge-a meta-algorithm called PROPEL-is based on three insights. First, we view our learning task as optimization in policy space, modulo the constraint that the desired policy has a programmatic representation, and solve this optimization problem using a form of mirror descent that takes a gradient step into the unconstrained policy space and then projects back onto the constrained space. Second, we view the unconstrained policy space as mixing neural and programmatic representations, which enables employing state-of-the-art deep policy gradient approaches. Third, we cast the projection step as program synthesis via imitation learning, and exploit contemporary combinatorial methods for this task. We present theoretical convergence results for PROPEL and empirically evaluate the approach in three continuous control domains. The experiments show that PROPEL can significantly outperform state-of-the-art approaches for learning programmatic policies. 
    more » « less
  5. Learning a dynamical system requires stabilizing the unknown dynamics to avoid state blow-ups. However, the standard reinforcement learning (RL) methods lack formal stabilization guarantees, which limits their applicability for the control of real-world dynamical systems. We propose a novel policy optimization method that adopts Krasovskii's family of Lyapunov functions as a stability constraint. We show that solving this stability-constrained optimization problem using a primal-dual approach recovers a stabilizing policy for the underlying system even under modeling error. Combining this method with model learning, we propose a model-based RL framework with formal stability guarantees, Krasovskii-Constrained Reinforcement Learning (KCRL). We theoretically study KCRL with kernel-based feature representation in model learning and provide a sample complexity guarantee to learn a stabilizing controller for the underlying system. Further, we empirically demonstrate the effectiveness of KCRL in learning stabilizing policies in online voltage control of a distributed power system. We show that KCRL stabilizes the system under various real-world solar and electricity demand profiles, whereas standard RL methods often fail to stabilize. 
    more » « less