skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Absence of Bursts between 4 and 8 GHz from FRB 20200120E Located in an M81 Globular Cluster
Abstract We report the non-detection of dispersed bursts between 4 and 8 GHz from 2.5 hr of observations of FRB 20200120E at 6 GHz using the Robert C. Byrd Green Bank Telescope. Our fluence limits are several times lower than the average burst fluences reported at 600 and 1400 MHz. We conclude that these non-detections are either due to high-frequency bursts being weaker and/or scintillation-induced modulated. It is also likely that our observations were non-concurrent with any activity window of FRB 20200120E.  more » « less
Award ID(s):
1950897
PAR ID:
10316891
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Research Notes of the AAS
Volume:
5
Issue:
7
ISSN:
2515-5172
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The origin of fast radio bursts (FRBs) still remains a mystery, even with the increased number of discoveries in the last 3 yr. Growing evidence suggests that some FRBs may originate from magnetars. Large, single-dish telescopes such as Arecibo Observatory (AO) and Green Bank Telescope (GBT) have the sensitivity to detect FRB 121102-like bursts at gigaparsec distances. Here, we present searches using AO and GBT that aimed to find potential radio bursts at 11 sites of past gamma-ray bursts that show evidence for the birth of a magnetar. We also performed a search towards GW170817, which has a merger remnant whose nature remains uncertain. We place $$10\sigma$$ fluence upper limits of ≈0.036 Jy ms at 1.4 GHz and ≈0.063 Jy ms at 4.5 GHz for the AO data and fluence upper limits of ≈0.085 Jy ms at 1.4 GHz and ≈0.098 Jy ms at 1.9 GHz for the GBT data, for a maximum pulse width of ≈42 ms. The AO observations had sufficient sensitivity to detect any FRB of similar luminosity to the one recently detected from the Galactic magnetar SGR 1935+2154. Assuming a Schechter function for the luminosity function of FRBs, we find that our non-detections favour a steep power-law index (α ≲ −1.1) and a large cut-off luminosity (L0 ≳ 1041 erg s−1). 
    more » « less
  2. ABSTRACT Fast radio bursts (FRBs) are extremely powerful sources of radio waves observed at cosmological distances. We use a sophisticated model of FRB observations – presented in detail in a companion paper – to fit FRB population parameters using large samples of FRBs detected by ASKAP and Parkes, including seven sources with confirmed host galaxies. Our fitted parameters demonstrate that the FRB population evolves with redshift in a manner consistent with, or faster than, the star formation rate (SFR), ruling out a non-evolving population at better than 98 per cent CL (depending on modelling uncertainties). Our estimated maximum FRB energy is $$\log _{10} E_{\rm max} [{\rm erg}] = 41.70_{-0.06}^{+0.53}$$ (68 per cent CL) assuming a 1 GHz emission bandwidth, with slope of the cumulative luminosity distribution $$\gamma =-1.09_{-0.10}^{+0.14}$$. We find a log-mean host DM contribution of $$129_{-48}^{+66}$$ pc cm−3 on top of a typical local (interstellar medium and halo) contribution of ∼80 pc cm−3, which is higher than most literature values. These results are insensitive to assumptions of the FRB spectral index, and are consistent with the model of FRBs arising as the high-energy limit of magnetar bursts, but allow for FRB progenitors that evolve faster than the SFR. 
    more » « less
  3. Abstract One scenario for the generation of fast radio bursts (FRBs) is magnetic reconnection in a current sheet of the magnetar wind. Compressed by a strong magnetic pulse induced by a magnetar flare, the current sheet fragments into a self-similar chain of magnetic islands. Time-dependent plasma currents at their interfaces produce coherent radiation during their hierarchical coalescence. We investigate this scenario using 2D radiative relativistic particle-in-cell simulations to compute the efficiency of the coherent emission and to obtain frequency scalings. Consistent with expectations, a fraction of the reconnected magnetic field energy,f∼ 0.002, is converted to packets of high-frequency fast magnetosonic waves, which can escape from the magnetar wind as radio emission. In agreement with analytical estimates, we find that magnetic pulses of 1047erg s−1can trigger relatively narrowband GHz emission with luminosities of approximately 1042erg s−1, sufficient to explain bright extragalactic FRBs. The mechanism provides a natural explanation for a downward frequency drift of burst signals, as well as the ∼100 ns substructure recently detected inFRB 20200120E. 
    more » « less
  4. Abstract We report the discovery of the repeating fast radio burst (FRB) source FRB 20240209A using the Canadian Hydrogen Intensity Mapping Experiment (CHIME)/FRB telescope. We detected 22 bursts from this repeater between 2024 February and July, 6 of which were also recorded at the Outrigger station k’niʔatn k’lstk’masqt (KKO). The multiple very long baseline interferometry localizations using the 66 km long CHIME–KKO baseline, each with a different baseline vector orientation due to the repeater’s high decl. of ∼86°, enabled the combined localization region to be constrained to 1″ × 2″. We present deep Gemini optical observations that, combined with the FRB localization, enabled a robust association of FRB 20240209A to the outskirts of a luminous galaxy (P(O∣x) = 0.99;L ≈ 5.3 × 1010L). FRB 20240209A has a projected physical offset of 40 ± 5 kpc from the center of its host galaxy, making it the FRB with the largest host galaxy offset to date. When normalized by the host galaxy size, the offset of FRB 20240209A (5.1Reff) is comparable to that of FRB 20200120E (5.7Reff), the only FRB source known to originate in a globular cluster. We consider several explanations for the large offset, including a progenitor that was kicked from the host galaxy or in situ formation in a low-luminosity satellite galaxy of the putative host, but find the most plausible scenario to be a globular cluster origin. This, coupled with the quiescent, elliptical nature of the host as demonstrated in our companion Letter, provides strong evidence for a delayed formation channel for the progenitor of the FRB source. 
    more » « less
  5. Abstract Precise localizations of a small number of repeating fast radio bursts (FRBs) using very long baseline interferometry (VLBI) have enabled multiwavelength follow-up observations revealing diverse local environments. However, the 2%–3% of FRB sources that are observed to repeat may not be representative of the full population. Here we use the VLBI capabilities of the full CHIME Outrigger array for the first time to localize a nearby (40 Mpc), bright (kJy), and apparently one-off FRB source, FRB 20250316A, to its environment on 13 pc scales. We use optical and radio observations to place deep constraints on associated transient emission and the properties of its local environment. We place a 5σupper limit ofL9.9 GHz < 2.1 × 1025erg s−1Hz−1on spatially coincident radio emission, a factor of 100 lower than any known compact persistent radio source associated with an FRB. Our Keck Cosmic Webb Imager observations allow us to characterize the gas density, metallicity, nature of gas ionization, dust extinction, and star formation rate through emission line fluxes. We leverage the exceptional brightness and proximity of this source to place deep constraints on the repetition of FRB 20250316A and find that it is inconsistent with all well-studied repeaters given the nondetection of bursts at lower spectral energies. We explore the implications of a measured offset of 190 ± 20 pc from the center of the nearest star formation region in the context of progenitor channels. FRB 20250316A marks the beginning of an era of routine localizations for one-off FRBs on tens of milliarcseconds scales, enabling large-scale studies of their local environments. 
    more » « less