skip to main content


Title: Temperature differences in hardwood trees using thermal dissipation probes in Hubbard Brook Experimental Forest, NH and Bartlett Experimental Forest, NH
The MELNHE study looks at patterns of resource limitation through nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook, located in the White Mountain National Forest. The investigation is monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. Applications of N and P began in June 2011 and continue at the rate of 30 kg N/ha/yr (as NH4NO3) and 10 kg P/ha/yr (as NaH2PO4). This dataset was produced using thermal dissipation probes in hardwood trees. We recorded temperature differences between the reference and heated over multiple days in five hardwood species across 5 years. Sites are located in Bartlett Experimental Forest and Hubbard Brook Experimental Forest in NH. The number of trees in each plot and species vary among years. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.  more » « less
Award ID(s):
1637685
NSF-PAR ID:
10317029
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The MELNHE study looks at patterns of resource limitation through nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook, located in the White Mountain National Forest. The investigation is monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. This data set includes phosphate, nitrate and ammonium availability measured using resin exchange strips. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. The following papers describe and make use of these data: Fisk MC, Ratliff TJ, Goswami S, Yanai RD. 2014. Synergistic soil response to nitrogen plus phosphorus fertilization in hardwood forests. Biogeochemistry 118:195-204. https://doi.org/10.1007/s10533-013-9918-1 Goswami S, Fisk MC, Vadeboncoeur MA, Johnston M, Yanai RD, and Fahey TJ. 2018. Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 99: 438-449. https://doi.org/10.1002/ecy.2100 Shan S, Fisk MC, Fahey TJ. 2018. Contrasting effects of N on rhizosphere processes in two northern hardwood species. Soil Biology and Biochemistry 126: 219-227. https://doi.org/10.1016/j.soilbio.2018.09.007 Shan S, Devens H, Fahey TJ, Yanai RD, Fisk MC. 2022. Fine root growth increases in response to nitrogen addition in phosphorus-limited northern hardwood forests. Ecosystems, https://doi.org/10.1007/s10021-021-00735-4 Gonzales KE, Yanai RD, Fahey TJ, Fisk MC. 2023. Evidence for P limitation in eight northern hardwood stands: Foliar concentrations and resorption by three tree species in a factorial N by P addition experiment. Forest Ecology and Management 529: 120696. https://doi.org/10.1016/j.foreco.2022.120696 Li S, Fisk MC, Yanai RD, Fahey TJ. 2023. Co-limitation of root growth by nitrogen and phosphorus in early successional northern hardwood forest. Ecosystems. https://10.1007/s10021-023-00869-7 
    more » « less
  2. The Multiple Element Limitation in Northern Hardwood Ecosystems (MELNHE) project studies N and P acquisition and limitation through a series of nutrient manipulations in northern hardwood forests. This data set includes net N mineralization measured in Oe, Oa, and mineral soil horizons in all 13 of the MELNHE study sites. Samples are collected every several years, beginning with pretreatment (2008 and 2009) through 2017, representing 3 years of N and P fertilization. Additional detail on the MELNHE project, including a datatable of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. The following papers describe and make use of these data: Kang H, Fahey TJ, Bae K, Fisk MC, Sherman RE, Yanai RD, See C. 2016. Response of forest soil respiration to nutrient addition depends on site fertility. Biogeochemistry 127:113-124. https://doi.org/10.1007/s10533-015-0172-6. Ratliff TJ, Fisk MC. 2016. Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biology and Biochemistry 94:61-69. https://doi.org/10.1016/j.soilbio.2015.11.009. Bae B, Fahey TJ, Yanai RD, Fisk MC. 2015. Soil nitrogen availability affects belowground carbon allocation and soil respiration in northern hardwood forests of New Hampshire. Ecosystems 18:1179-1191. https://doi.org/10.1007/s10021-015-9892-7. Fisk MC, Ratliff TJ, Goswami S, Yanai RD. 2014. Synergistic soil response to nitrogen plus phosphorus fertilization in hardwood forests. Biogeochemistry 118:195-204. https://doi.org/10.1007/s10533-013-9918-1. 
    more » « less
  3. Freshly senesced leaf litter was collected during autumn in New Hampshire at the Bartlett Experimental Forest, Hubbard Brook Experimental Forest, and Jeffers Brook as part of the Multiple Elementation Limitation in Northern Hardwood Ecosystems (MELNHE) study. Leaf litter was collected in October of 2009, 2010, 2014, 2015, and 2016 at peak litterfall (i.e., mid-October) during a rain-free period. These leaf-litter samples were analyzed for nutrient concentrations for use in resorption analyses. These leaf litter samples correspond with green foliage samples collected in late July and early August of the same years: the green foliage EDI package can be found at the following citation: Hong, S.D., K.E. Gonzales, C.R. See, and R.D. Yanai. 2021. MELNHE: Foliar Chemistry 2008-2016 in Bartlett, Hubbard Brook, and Jeffers Brook (12 stands) ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/b23deb8e1ccf1c1413382bf911c6be19 These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Although temperate forests are generally thought of as N-limited, resource optimization theory predicts that ecosystem productivity should be co-limited by multiple nutrients. These ideas are represented in the Multi-Element Limitation (MEL) model (Rastetter et al. 2012). To test the patterns of resource limitation predicted by MEL, we are conducting nutrient manipulations in three study sites in New Hampshire: Bartlett Experimental Forest (BEF), Hubbard Brook Experimental Forest (HBEF), and Jeffers Brook in the White Mountain National Forest. We are monitoring stem diameter, leaf area, sap flow, foliar chemistry, leaf litter production and chemistry, foliar nutrient resorption, root biomass and production, mycorrhizal associations, soil respiration, heterotrophic respiration, N and P availability, N mineralization, soil phosphatase activity, soil carbon and nitrogen, nutrient uptake capacity of roots, and mineral weathering. These data can be found in the EDI repository, using the search term "MELNHE" (http://portal.edirepository.org), and through the data catalog on https://hubbardbrook.org, using the same search term. This data package is referenced by the MELNHE datasets, and includes a datatable of site descriptions and a pdf file with the project description, and diagrams of plot configuration. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. Climate models for the northeastern United States (U.S.) over the next century predict an increase in air temperature between 2.8 and 4.3 °C and a decrease in the average number of days per year when a snowpack will cover the forest floor (Hayhoe et al. 2007, 2008; Campbell et al. 2010). Studies of forest dynamics in seasonally snow-covered ecosystems have been primarily conducted during the growing season, when most biological activity occurs. However, in recent years considerable progress has been made in our understanding of how winter climate change influences dynamics in these forests. The snowpack insulates soil from below-freezing air temperatures, which facilitates a significant amount of microbial activity. However, a smaller snowpack and increased depth and duration of soil frost amplify losses of dissolved organic C and NO3- in leachate, as well as N2O released into the atmosphere. The increase in nutrient loss following increased soil frost cannot be explained by changes in microbial activity alone. More likely, it is caused by a decrease in plant nutrient uptake following increases in soil frost. We conducted a snow-removal experiment at Hubbard Brook Experimental Forest to determine the effects of a smaller winter snowpack and greater depth and duration of soil frost on trees, soil microbes, and arthropods. A number of publications have been based on these data: Comerford et al. 2013, Reinmann et al. 2019, Templer 2012, and Templer et al. 2012. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrological Processes. 2010; 24:2465–2480. Comerford DP, PG Schaberg, PH Templer, AM Socci, JL Campbell, and KF Wallin. 2013. Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia 171:261-269. Hayhoe K, Wake CP, Huntington TG, Luo LF, Schwartz MD, Sheffield J, et al. Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics. 2007; 28:381–407. Hayhoe, K., Wake, C., Anderson, B. et al. Regional climate change projections for the Northeast USA. Mitig Adapt Strateg Glob Change 13, 425–436 (2008). https://doi.org/10.1007/s11027-007-9133-2. Reinmann AB, J Susser, EMC Demaria, PH Templer. 2019. Declines in northern forest tree growth following snowpack decline and soil freezing.  Global Change Biology 25:420-430. Templer PH. 2012. Changes in winter climate: soil frost, root injury, and fungal communities (Invited). Plant and Soil 35: 15-17 Templer PH , AF Schiller, NW Fuller, AM Socci, JL Campbell, JE Drake, and TH Kunz. 2012. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biology and Fertility of Soils 48:413-424. 
    more » « less