skip to main content

This content will become publicly available on August 1, 2022

Title: Interaction of water with zeolites: a review
Water is ubiquitous in many thermal treatments and reaction conditions involving zeolite catalysts, but the potential impacts are complex. The different types of water interaction with zeolites have profound consequences in the stability, structure/ composition, and reactivity of these important catalysts. This review analyzes the current knowledge about the mechanistic aspects of water adsorption and nucleation on zeolites surfaces and the concomitant role of zeolite defects, cations and extra framework species. Examples of experimental and computational studies of water interaction with zeolites of varying Si/Al ratios, topologies, and level of silanol defects are reviewed and analyzed. The different steps associated with the process of steaming, including the Al-O-Si bond hydrolysis and subsequent structural modifications, such as dealumination, mesopore formation, and amorphization, are evaluated in light of recent DFT calculations, as well as SS NMR and other spectroscopic studies. Differences between the mechanisms of water attack of the zeolite in vapor or liquid phase are highlighted and explained, as well as the effect of hydrophobic/hydrophilic properties of the zeolite walls. In parallel, the various roles of water as modifier of reactivity are reviewed and discussed, both for plain zeolites as well as rare-earth or phosphorous-modified materials.
Authors:
; ; ;
Award ID(s):
1764116
Publication Date:
NSF-PAR ID:
10317080
Journal Name:
Catalysis reviews science and engineering
Volume:
63
Issue:
2
ISSN:
0161-4940
Sponsoring Org:
National Science Foundation
More Like this
  1. The synthesis of hierarchical lamellar zeolites with a controlled meso-/microporous morphology and acidity is an expanding area of research interest for a wide range of applications. Here, we report a one-step synthesis of a hierarchical meso-/microporous lamellar MFI–Sn/Al zeolite ( i.e. , containing both Lewis acidic Sn- and Al-sites and a Brønsted acidic Al–O(H)–Si site) and its catalytic application for the conversion of glucose into 5-(ethoxymethyl)furfural (EMF). The MFI–Sn/Al zeolite was prepared with the assistance of a diquaternary ammonium ([C 22 H 45 –N + (CH 3 ) 2 –C 6 H 12 –N + (CH 3 ) 2 –Cmore »6 H 13 ]Br 2− , C 22-6-6 ) template in a composition of 100SiO 2 /5C 22-6-6 /18.5Na 2 O/ x Al 2 O 3 / y SnO 2 /2957H 2 O ( x = 0.5, 1, and 2; y = 1 and 2, respectively). The MFI–Sn/Al zeolites innovatively feature dual meso-/microporosity and dual Lewis and Brønsted acidity, which enabled a three-step reaction cascade for EMF synthesis from glucose in ethanol solvent. The reaction proceeded via the isomerization of glucose to fructose over Lewis acidic Sn sites and the dehydration of fructose to 5-hydroxymethylfurfural (HMF) and then the etherification of HMF and ethanol to EMF over the Brønsted acidic Al–O(H)–Si sites. The co-existence of multiple acidities in a single zeolite catalyst enabled one-pot cascade reactions for carbohydrate upgrading. The dual meso-/microporosity in the MFI–Sn/Al zeolites facilitated mass transport in processing of bulky biomass molecules. The balance of both types of acidity and meso-/microporosity realized an EMF yield as high as 44% from the glucose reactant.« less
  2. We report a scalable delamination procedure for a SSZ-70-framework layered-zeolite precursor, which for the first time does not involve either sonication or long-chain surfactants. Our approach instead relies on the mild heating of layered zeolite precursor B-SSZ-70(P) in an aqueous solution containing Zn(NO 3 ) 2 and tetrabutylammonium fluoride. Powder X-ray diffraction data are consistent with a loss of long-range order along the z -direction, while 29 Si MAS NMR spectroscopy demonstrates preservation of the zeolite framework crystallinity during delamination. The resulting delaminated material, DZ-2, possesses 1.4-fold higher external surface area relative to the nondelaminated three-dimensional zeolite B-SSZ-70, based onmore »N 2 physisorption data at 77 K. DZ-2 was functionalized with cationic Ti heteroatoms to synthesize Ti-DZ-2 via exchange with framework B. Ti-DZ-2 contains isolated titanium centers in its crystalline framework, as shown by UV-Vis spectroscopy. The generality of the synthetic delamination approach and catalyst synthesis is demonstrated with the synthesis of delaminated material DZ-3, which is derived from layered zeolite precursor ERB-1(P) with MWW framework topology. Upon catalytic testing for the epoxidation of 1-octene with ethylbenzene hydroperoxide as oxidant, under harsh tail-end conditions that deactivate amorphous Ti-silica-based catalysts, Ti-DZ-2 exhibits the highest per-Ti-site activity, selectivity, and stability for 1-octene epoxidation of all catalysts investigated. This testing includes the prior benchmark delaminated zeolite catalyst in this area, Ti-UCB-4, which possesses similar external surface area to Ti-DZ-2 but requires sonication and long-chain surfactants for its synthesis. The synthesis of DZ-2 is the first example of an economical delamination of layered zeolite precursor SSZ-70(P) and opens up new doors to the development of delaminated zeolites as commercial catalysts.« less
  3. The catalytic properties of zeolites are intimately linked to the distribution and relative positions of Al atoms and defects in the pore network. However, characterizing this distribution is challenging, in particular when different local Al arrangements are considered. In this contribution we use a combination of first principles calculations and experimental measurements to develop a model for the Al-distribution in protonated SSZ-13. We furthermore apply this model to understand trends in OH-IR, 27 Al-NMR and 29 Si-NMR spectra. We use a Boltzmann distribution to predict the proton position for a given local Al configuration and show that for each configurationmore »several H positions are occupied. Therefore a multi-peak spectrum in OH-IR vibrational spectroscopy is observed for all Al configurations, which is in line with experimentally measured spectra for zeolites at different Si/Al ratios. From NMR spectroscopy we find that the proton position leads to significant shifts in 27 Al-NMR and 29 Si-NMR spectra due to the modification of the local strain, which is lost when a uniform background charge is introduced. These findings are supported by experimental measurements. Finally we discuss the shortcomings of the presented model in terms of unit cell size and the impact of adjacent unit cells.« less
  4. Zeolites are known to be effective catalysts in biomass converting processes. Understanding the mesoporous structure and dynamics within it during such reactions is important in effectively utilizing them. Nuclear magnetic resonance (NMR) T2 relaxation and diffusion measurements, using a high-power radio frequency probe, are shown to characterize the dynamics of water in mesoporous commercially made 5A zeolite beads before and after the introduction of xylose. Xylose is the starting point in the dehydration into furfural. The results indicate xylose slightly enhances rotational mobility while it decreases translational motion through altering the permeability, K, throughout the porous structure. The measurements showmore »xylose inhibits pure water from relocating into larger pores within the zeolite beads where it eventually is expelled from the bead itself.« less
  5. Catalytic conversion of methane to methanol remains an economically tantalizing but fundamentally challenging goal. Current technologies based on zeolites deactivate too rapidly for practical application. We found that similar active sites hosted in different zeolite lattices can exhibit markedly different reactivity with methane, depending on the size of the zeolite pore apertures. Whereas zeolite with large pore apertures deactivates completely after a single turnover, 40% of active sites in zeolite with small pore apertures are regenerated, enabling a catalytic cycle. Detailed spectroscopic characterization of reaction intermediates and density functional theory calculations show that hindered diffusion through small pore apertures disfavorsmore »premature release of CH3radicals from the active site after C-H activation, thereby promoting radical recombination to form methanol rather than deactivated Fe-OCH3centers elsewhere in the lattice.

    « less