skip to main content


Title: Dual functions of CO 2 molecular activation and 4f levels as electron transport bridges in erbium single atom composite photocatalysts therefore enhancing visible-light photoactivities
Only when the interfacial charge separation is enhanced and the CO 2 activation is improved, can the heterojunction nanocomposite photocatalyst be brought into full play for the CO 2 reduction reaction (CO 2 RR). Here, Er 3+ single atom composite photocatalysts were successfully constructed based on both the special role of Er 3+ single atoms and the special advantages of the SrTiO 3 :Er 3+ /g-C 3 N 4 heterojunction in the field of photocatalysis for the first time. As we expected, the SrTiO 3 :Er 3+ /g-C 3 N 4 (22.35 and 16.90 μmol g −1 h −1 for CO and CH 4 ) exhibits about 5 times enhancement in visible-light photocatalytic activity compared to pure g-C 3 N 4 (4.60 and 3.40 μmol g −1 h −1 for CO and CH 4 ). In particular, the photocatalytic performance of SrTiO 3 :Er 3+ /g-C 3 N 4 is more than three times higher than that of SrTiO 3 /g-C 3 N 4 . From Er 3+ fluorescence quenching measurements, photoelectrochemical studies, transient PL studies and DFT calculations, it is verified that a small fraction of surface doping of Er 3+ formed Er single-atoms on SrTiO 3 building an energy transfer bridge between the interface of SrTiO 3 and g-C 3 N 4 , resulting in enhanced interfacial charge separation. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) and adsorption energy calculations demonstrated that the exposed Er single-atoms outside the interface on SrTiO 3 preferentially activate the adsorbed CO 2 , leading to the high photoactivity for the CO 2 RR. A novel enhanced photocatalytic mechanism was proposed, in which Er single-atoms play dual roles of an energy transfer bridge and activating CO 2 to promote charge separation. This provides new insights and feasible routes to develop highly efficient photocatalytic materials by engineering rare-earth single-atom doping.  more » « less
Award ID(s):
1945558
NSF-PAR ID:
10317152
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
9
Issue:
28
ISSN:
2050-7488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The effect of rare earth (RE) single atoms on photocatalytic activity is very complex due to its special electronic configuration, which leads to few reports on the RE single atoms. Here, Dy3+single atom composite photocatalysts are successfully constructed based on both the special role of Dy3+and the special advantages of CdS/g‐C3N4heterojunction in the field of photocatalysis. The results show that an efficient way of electron transfer is provided to promote charge separation, and the dual functions of CO2molecular activation of rare‐earth single atom and 4flevels as electron transport bridge are fully exploited. It is exciting that under visible‐light irradiation, the catalytic performance of CdS:Dy3+/g‐C3N4is6.9 times higher than that of pure g‐C3N4. The catalytic performance of CdS:Dy3+and CdS:Dy3+/g‐C3N4are7 and13.7 times higher than those of pure CdS, respectively. Besides, not all RE ions are suitable for charge transfer bridges, which is not only related to the 4flevels of RE ions but also related to the bandgap structure of CdS and g‐C3N4. The pattern of combining single‐atom catalysis and heterojunction opens up new methods for enhancing photocatalytic activity.

     
    more » « less
  2. Abstract

    Single‐atom catalysts have demonstrated interesting activity in a variety of applications. In this study, we prepared single Co2+sites on graphitic carbon nitride (C3N4), which was doped with carbon for enhanced activity in visible‐light CO2reduction. The synthesized materials were characterized with a variety of techniques, including microscopy, X‐ray powder diffraction, UV‐vis spectroscopy, infrared spectroscopy, photoluminescence spectroscopy, and X‐ray absorption spectroscopy. Doping C3N4with carbon was found to have profound effect on the photocatalytic activity of the single Co2+sites. At relatively low levels, carbon doping enhanced the photoresponse of C3N4in the visible region and improved charge separation upon photoactivation, thereby enhancing the photocatalytic activity. High levels of carbon doping were found to be detrimental to the photocatalytic activity of the single Co2+sites by altering the structure of C3N4and generating defect sites responsible for charge recombination.

     
    more » « less
  3. Improving the low charge separation efficiency, poor light absorption capacity, and insufficient active sites of photocatalysts are the important challenges for CO 2 photoreduction. In this study, a Mo modified InOOH/In(OH) 3 heterojunction with enhanced CO 2 reduction efficiency was synthesized in situ by using an In(OH) 3 monatomic lamellar material with isolated In atom sites exposed on its surface. And bandgap tuning via the energy levels formed by Mo doping and vacancy defect engineering can simultaneously improve visible light absorption and photogenerated charge separation. The results of experimental characterization and DFT calculation show that the Mo impurity energy levels, O defect energy levels, and surface Mo atoms existing in the InOOH phase can act as an electron transfer ladder in cooperation with the In defect energy levels in the In(OH) 3 phase, thereby promoting electron transfer between heterogeneous interfaces. Under visible light irradiation, the evolution rates of CH 4 and CO of the Mo modified InOOH/In(OH) 3 photocatalyst are more than ∼11 and ∼8 times higher than those of InOOH, respectively. This work provides new insights into the design of the CO 2 photoreduction platform through a collaborative strategy of bandgap tuning, transition metal doping, and heterostructure construction. 
    more » « less
  4. Abstract

    Single‐atom catalysts (SACs) have attracted much attentions due to the advantages of high catalysis efficiency and selectivity. However, the controllable and efficient synthesis of SACs remains a significant challenge. Herein, we report a controlled one‐pot synthesis of nickel single atoms embedded on nitrogen‐doped carbon nanotubes (NiSA−N−CNT) and nitrogen‐doped graphene (NiSA−N−G). The formation of NiSA−N−CNT is due to the solid‐to‐solid rolling up mechanism during the high temperature pyrolysis at 800 °C from the stacked and layered Ni‐doped g‐C3N4, g‐C3N4−Ni structure to a tubular CNT structure. Addition of citric acid introduces an amorphous carbon source on the layered g‐C3N4−Ni and after annealing at the same temperature of 800 °C, instead of formation of NiSA−N−CNT, Ni single atoms embedded in planar graphene type supports, NiSA−N−G were obtained. The density functional theory (DFT) calculation indicates the introduction of amorphous carbon source substantially reduces the structure fluctuation or curvature of layered g‐C3N4‐Ni intermediate products, thus interrupting the solid‐to‐solid rolling process and leading to the formation of planar graphene type supports for Ni single atoms. The as‐synthesized NiSA−N−G with Ni atomic loading of ∼6 wt% catalysts shows a better activity and stability for the CO2reduction reaction (CO2RR) than NiSA−N−CNT with Ni atomic loading of ∼15 wt% due to the open and exposed Ni single atom active sites in NiSA−N−G. This study demonstrates for the first time the feasibility in the control of the microstructure of carbon supports in the synthesis of SACs.

     
    more » « less
  5. A new series of gallium( iii )/lanthanide( iii ) metallacrown (MC) complexes ( Ln-1 ) was synthesized by the direct reaction of salicylhydroxamic acid (H 3 shi) with Ga III and Ln III nitrates in a CH 3 OH/pyridine mixture. X-ray single crystal analysis revealed two types of structures depending on whether the nitrate counterion coordinate or not to the Ln III : [LnGa 4 (shi) 4 (H 2 shi) 2 (py) 4 (NO 3 )](py) 2 (Ln = Gd III , Tb III , Dy III , Ho III ) and [LnGa 4 (shi) 4 (H 2 shi) 2 (py) 5 ](NO 3 )(py) (Ln = Er III , Tm III , Yb III ). The representative Tb-1 and Yb-1 MCs consist of a Tb/YbGa 4 core with four [Ga III –N–O] repeating units forming a non-planar ring that coordinates the central Ln III through the oxygen atoms of the four shi 3− groups. Two H 2 shi − groups bridge the Ln III to the Ga III ring ions. The Yb III in Yb-1 is eight-coordinated while the ligation of the nine-coordinated Tb III in Tb-1 is completed by one chelating nitrate ion. Ln-1 complexes in the solid state showed characteristic sharp f–f transitions in the visible (Tb, Dy) and near-infrared (Dy, Ho, Er, Yb) spectral ranges upon excitation into the ligand-centered electronic levels at 350 nm. Observed luminescence lifetimes and absolute quantum yields were collected and discussed. For Yb-1 , luminescence data were also acquired in CH 3 OH and CD 3 OD solutions and a more extensive analysis of photophysical properties was performed. This work demonstrates that while obtaining highly luminescent lanthanide( iii ) MCs via a direct synthesis is feasible, many factors such as molar absorptivities, triplet state energies, non-radiative deactivations through vibronic coupling with overtones of O–H, N–H, and C–H oscillators and crystal packing will strongly contribute to the luminescent properties and should be carefully considered. 
    more » « less