skip to main content

Title: Single scattering modeling of speckle correlation
Coherent images of scattering materials, such as biological tissue, typically exhibit high-frequency intensity fluctuations known as speckle. These seemingly noise-like speckle patterns have strong statistical correlation properties that have been successfully utilized by computational imaging systems in different application areas. Unfortunately, these properties are not well-understood, in part due to the difficulty of simulating physically-accurate speckle patterns. In this work, we propose a new model for speckle statistics based on a single scattering approximation, that is, the assumption that all light contributing to speckle correlation has scattered only once. Even though single-scattering models have been used in computer vision and graphics to approximate intensity images due to scattering, such models usually hold only for very optically thin materials, where light indeed does not scatter more than once. In contrast, we show that the single-scattering model for speckle correlation remains accurate for much thicker materials. We evaluate the accuracy of the single-scattering correlation model through exhaustive comparisons against an exact speckle correlation simulator. We additionally demonstrate the model's accuracy through comparisons with real lab measurements. We show, that for many practical application settings, predictions from the single-scattering model are more accurate than those from other approximate models popular in optics, such as the diffusion and Fokker-Planck models. We show how to use the single-scattering model to derive closed-form expressions for speckle correlation, and how these expressions can facilitate the study of statistical speckle properties. In particular, we demonstrate that these expressions provide simple explanations for previously reported speckle properties, and lead to the discovery of new ones. Finally, we discuss potential applications for future computational imaging systems.  more » « less
Award ID(s):
1730147 2008123
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE International Conference on Computational Photography (ICCP)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in computational imaging have significantly expanded our ability to image through scattering layers such as biological tissues by exploiting the auto-correlation properties of captured speckle intensity patterns. However, most experimental demonstrations of this capability focus on the far-field imaging setting, where obscured light sources are very far from the scattering layer. By contrast, medical imaging applications such as fluorescent imaging operate in the near-field imaging setting, where sources are inside the scattering layer. We provide a theoretical and experimental study of the similarities and differences between the two settings, highlighting the increased challenges posed by the near-field setting. We then draw insights from this analysis to develop a new algorithm for imaging through scattering that is tailored to the near-field setting by taking advantage of unique properties of speckle patterns formed under this setting, such as their local support. We present a theoretical analysis of the advantages of our algorithm and perform real experiments in both far-field and near-field configurations, showing an order-of magnitude expansion in both the range and the density of the obscured patterns that can be recovered. 
    more » « less
  2. The generation of speckle patterns via random matrices, statistical definitions, or apertures may not always result in optimal outcomes. Issues such as correlation fluctuations in low ensemble numbers and diffraction in long-distance propagation can arise. Instead of improving results of specific applications, our solution is catching deep correlations of patterns with the framework, Speckle-Net, which is fundamental and universally applicable to various systems. We demonstrate this in computational ghost imaging (CGI) and structured illumination microscopy (SIM). In CGI with extremely low ensemble number, it customizes correlation width and minimizes correlation fluctuations in illuminating patterns to achieve higher-quality images. It also creates non-Rayleigh nondiffracting speckle patterns only through a phase mask modulation, which overcomes the power loss in the traditional ring-aperture method. Our approach provides new insights into the nontrivial speckle patterns and has great potential for a variety of applications including dynamic SIM, X-ray and photo-acoustic imaging, and disorder physics.

    more » « less
  3. Abstract In the problem of spotlight mode airborne synthetic aperture radar (SAR) image formation, it is well-known that data collected over a wide azimuthal angle violate the isotropic scattering property typically assumed. Many techniques have been proposed to account for this issue, including both full-aperture and sub-aperture methods based on filtering, regularized least squares, and Bayesian methods. A full-aperture method that uses a hierarchical Bayesian prior to incorporate appropriate speckle modeling and reduction was recently introduced to produce samples of the posterior density rather than a single image estimate. This uncertainty quantification information is more robust as it can generate a variety of statistics for the scene. As proposed, the method was not well-suited for large problems, however, as the sampling was inefficient. Moreover, the method was not explicitly designed to mitigate the effects of the faulty isotropic scattering assumption. In this work we therefore propose a new sub-aperture SAR imaging method that uses a sparse Bayesian learning-type algorithm to more efficiently produce approximate posterior densities for each sub-aperture window. These estimates may be useful in and of themselves, or when of interest, the statistics from these distributions can be combined to form a composite image. Furthermore, unlike the often-employed ℓ p -regularized least squares methods, no user-defined parameters are required. Application-specific adjustments are made to reduce the typically burdensome runtime and storage requirements so that appropriately large images can be generated. Finally, this paper focuses on incorporating these techniques into SAR image formation process, that is, for the problem starting with SAR phase history data, so that no additional processing errors are incurred. The advantage over existing SAR image formation methods are clearly presented with numerical experiments using real-world data. 
    more » « less
  4. Optical coherence tomography (OCT) leverages light scattering by biological tissues as endogenous contrast to form structural images. Light scattering behavior is dictated by the optical properties of the tissue, which depend on microstructural details at the cellular or sub-cellular level. Methods to measure these properties from OCT intensity data have been explored in the context of a number of biomedical applications seeking to access this sub-resolution tissue microstructure and thereby increase the diagnostic impact of OCT. Most commonly, the optical attenuation coefficient, an analogue of the scattering coefficient, has been used as a surrogate metric linking OCT intensity to subcellular particle characteristics. To record attenuation coefficient data that is accurately representative of the underlying physical properties of a given sample, it is necessary to account for the impact of the OCT imaging system itself on the distribution of light intensity in the sample, including the numerical aperture (NA) of the system and the location of the focal plane with respect to the sample surface, as well as the potential contribution of multiple scattering to the reconstructed intensity signal. Although these considerations complicate attenuation coefficient measurement and interpretation, a suitably calibrated system may potentiate a powerful strategy for gaining additional information about the scattering behavior and microstructure of samples. In this work, we experimentally show that altering the OCT system geometry minimally impacts measured attenuation coefficients in samples presumed to be singly scattering, but changes these measurements in more highly scattering samples. Using both depth-resolved attenuation coefficient data and layer-resolved backscattering coefficients, we demonstrate the retrieval of scattering particle diameter and concentration in tissue-mimicking phantoms, and the impact of presumed multiple scattering on these calculations. We further extend our approach to characterize a murine brain tissue sample and highlight a tumor-bearing region based on increased scattering particle density. Through these methods, we not only enhance conventional OCT attenuation coefficient analysis by decoupling the independent effects of particle size and concentration, but also discriminate areas of strong multiple scattering through minor changes to system topology to provide a framework for assessing the accuracy of these measurements.

    more » « less
  5. A host of important performance properties for metal–organic frameworks (MOFs) and other complex materials can be calculated by modeling statistical ensembles. The principle challenge is to develop accurate and computationally efficient interaction models for these simulations. Two major approaches are (i) ab initio molecular dynamics in which the interaction model is provided by an exchange–correlation theory ( e.g. , DFT + dispersion functional) and (ii) molecular mechanics in which the interaction model is a parameterized classical force field. The first approach requires further development to improve computational speed. The second approach requires further development to automate accurate forcefield parameterization. Because of the extreme chemical diversity across thousands of MOF structures, this problem is still mostly unsolved today. For example, here we show structures in the 2014 CoRE MOF database contain more than 8 thousand different atom types based on first and second neighbors. Our results showed that atom types based on both first and second neighbors adequately capture the chemical environment, but atom types based on only first neighbors do not. For 3056 MOFs, we used density functional theory (DFT) followed by DDEC6 atomic population analysis to extract a host of important forcefield precursors: partial atomic charges; atom-in-material (AIM) C 6 , C 8 , and C 10 dispersion coefficients; AIM dipole and quadrupole moments; various AIM polarizabilities; quantum Drude oscillator parameters; AIM electron cloud parameters; etc. Electrostatic parameters were validated through comparisons to the DFT-computed electrostatic potential. These forcefield precursors should find widespread applications to developing MOF force fields. 
    more » « less