Just Scratching the Surface: In Situ and Surface-Specific Characterization of Perovskite Nanocrystal Growth
- Award ID(s):
- 1752129
- PAR ID:
- 10317165
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry C
- Volume:
- 125
- Issue:
- 38
- ISSN:
- 1932-7447
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Staphylococcus aureus(S. aureus), a common foodborne pathogen, poses significant public health challenges due to its association with various infectious diseases. A key player in its pathogenicity, which is the IsdA protein, is an essential virulence factor inS. aureusinfections. In this work, we present an integrated in‐silico and experimental approach using MD simulations and surface plasmon resonance (SPR)‐based aptasensing measurements to investigateS. aureusbiorecognition via IsdA surface protein binding. SPR, a powerful real‐time and label‐free technique, was utilized to characterize interaction dynamics between the aptamer and IsdA protein, and MD simulations was used to characterize the stable and dynamic binding regions. By characterizing and optimizing pivotal parameters such as aptamer concentration and buffer conditions, we determined the aptamer's binding performance. Under optimal conditions of pH 7.4 and 150 mM NaCl concentration, the kinetic parameters were determined;ka = 3.789 × 104/Ms,kd = 1.798 × 103/s, andKD = 4.745 × 10−8 M. The simulations revealed regions of interest in the IsdA‐aptamer complex. Region I, which includes interactions between amino acid residues H106 and R107 and nucleotide residues 9G, 10U, 11G and 12U of the aptamer, had the strongest interaction, based on ΔG and B‐factor values, and hence contributed the most to the stability of the interaction. Region II, which covers residue 37A reflects the dynamic nature of the interaction due to frequent contacts. The approach presents a rigorous characterization of aptamer‐IsdA binding behavior, supporting the potential application of the IsdA‐binding aptamer system forS. aureusbiosensing.more » « less
-
Henkin, Tina M (Ed.)ABSTRACT Whole genome sequencing has revealed that the genome ofStaphylococcus aureuspossesses an uncharacterized 5-gene operon (SAOUHSC_00088–00092 in strain 8325 genome) that encodes factors with functions related to polysaccharide biosynthesis and export, indicating the existence of a new extracellular polysaccharide species. We designate this locus assscfor staphylococcal surface carbohydrate. We found that thesscgenes were weakly expressed and highly repressed by the global regulator MgrA. To characterize Ssc, Ssc was heterologously expressed inEscherichia coliand extracted by heat treatment. Ssc was also conjugated to AcrA fromCampylobacter jejuniinE. coliusing protein glycan coupling technology (PGCT). Analysis of the heat-extracted Ssc and the purified Ssc-AcrA glycoconjugate by tandem mass spectrometry revealed that Ssc is likely a polymer consisting ofN-acetylgalactosamine. We further demonstrated that the expression of thesscgenes inS. aureusaffected phage adsorption and susceptibility, suggesting that Ssc is surface-exposed. IMPORTANCESurface polysaccharides play crucial roles in the biology and virulence of bacterial pathogens.Staphylococcus aureusproduces four major types of polysaccharides that have been well-characterized. In this study, we identified a new surface polysaccharide containing N-acetylgalactosamine (GalNAc). This marks the first report of GalNAc-containing polysaccharide inS. aureus. Our discovery lays the groundwork for further investigations into the chemical structure, surface location, and role in pathogenesis of this new polysaccharide.more » « less
-
Controllable, precise, and stable rotational manipulation of model organisms is valuable in many biomedical, bioengineering, and biophysics applications. We present an acoustofluidic chip capable of rotating Caenorhabditis elegans ( C. elegans ) in both static and continuous flow in a controllable manner. Rotational manipulation was achieved by exposing C. elegans to a surface acoustic wave (SAW) field that generated a vortex distribution inside a microchannel. By selectively activating interdigital transducers, we achieved bidirectional rotation of C. elegans , namely counterclockwise and clockwise, with on-demand switching of rotation direction in a single chip. In addition to continuous rotation, we also rotated C. elegans in a step-wise fashion with a step angle as small as 4° by pulsing the signal duration of SAW from a continuous signal to a pulsed signal down to 1.5 ms. Using this device, we have clearly imaged the dopaminergic neurons of C. elegans with pdat-1:GFP expression, as well as the vulval muscles and muscle fibers of the worm with myo-3::GFP fusion protein expression in different orientations and three dimensions. These achievements are difficult to realize through conventional ( i.e. , non-confocal) microscopy. The SAW manipulations did not detectably affect the health of the model organisms. With its precision, controllability, and simplicity in fabrication and operation, our acoustofluidic devices will be well-suited for model organism studies.more » « less
An official website of the United States government

