Abstract Idealized numerical simulations of Mesoscale Convective Systems (MCSs) over a range of instabilities and shears were conducted to examine low-frequency gravity waves generated during initial and mature stages of convection. In all simulations, at initial updraft development a first-order wave was generated by heating extending the depth of the troposphere. Additional first-order wave modes were generated each time the convective updraft reintensified. Each of these waves stabilized the environment in advance of the system. As precipitation descended below cloud base, and as a stratiform precipitation region developed, second-order wave modes were generated by cooling extending from the mid-levels to the surface. These waves destabilized the environment ahead of the system but weakened the 0-5 km shear. Third-order wave modes could be generated by mid-level cooling caused by rear inflow intensification; these wave modes cooled the mid-levels destabilizing the environment. The developing stage of each MCS was characterized by a cyclical process: developing updraft, generation of n = 1 wave, increase in precipitation, generation of n = 2 wave, and subsequent environmental destabilization reinvigorating the updraft. After rearward expansion of the stratiform region, the MCSs entered their mature stage and the method of updraft reinvigoration shifted to absorbing discrete convective cells produced in advance of each system. Higher-order wave modes destabilized the environment making it more favorable to development of these cells and maintenance of the MCS. As initial simulation shear or instability increased, the transition from cyclical wave/updraft development to discrete cell/updraft development occurred more quickly.
more »
« less
Response of MCS Low-Frequency Gravity Waves to Vertical Wind Shear and Nocturnal Thermodynamic Environments
Abstract This study investigates the sensitivities of mesoscale convective system (MCS) low-frequency gravity waves to changes in the vertical wind and thermodynamic profile through idealized cloud model simulations, highlighting how internal MCS processes impact low-frequency gravity wave generation, propagation, and environmental influence. Spectral analysis is performed on the rates of latent heat release, updraft velocity, and deep-tropospheric descent ahead of the convection as a signal for vertical wavenumber wave passage. Results show that perturbations in midlevel descent up to 100 km ahead of the MCS occur at the same frequency as gravity wave generation prompted by fluctuations in latent heat release due to the cellular variations of the MCS updrafts. Within a nocturnal environment, the frequency of the cellularity of the updrafts increases, subsequently increasing the frequency of wave generation. In an environment with low-level unidirectional shear, results indicate that wave generation mechanisms and environmental influence are similar among the simulated daytime and nocturnal MCSs. When deep vertical wind shear is incorporated, many of the low-frequency waves are strong enough to support cloud development ahead of the MCS as well as sustain and support convection.
more »
« less
- Award ID(s):
- 1636663
- PAR ID:
- 10317335
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 78
- Issue:
- 12
- ISSN:
- 0022-4928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bores have been shown to play a role in the initiation and maintenance of mesoscale convective systems (MCSs), particularly during the night after the boundary layer stabilizes. To date, the generation, evolution, and structure of bores over China has received little attention. This study utilizes observations and simulations with the WRF‐ARW model to investigate the generation and evolution of an atmospheric bore observed over Yangtze‐Huai Plains of China. The bore was associated with a nocturnal MCS that first formed over elevated terrain. The bore was observed ahead of the MCS with a maximum lateral extension of ~100 km. The feature lasted for over 90 mins and propagated at a speed of ~13 m/s, slightly faster than the MCS. In the simulation, the bore evolved from the separating “head” of the convectively generated gravity current. The bore then continued to propagate ahead of the MCS, even after the dissipation of the feeder current, and took on the appearance of an undular bore. The bore lifted a layer of convectively unstable air above the nocturnal surface inversion, initiating new convection ahead of the MCS to help maintain the MCS. The Scorer parameter ahead of the bore revealed a low‐level wind profile with curvature of the vertical profile of horizontal wind, favoring the trapping of wave energy and the persistence of the bore. These results are generally consistent with the role of bores in the maintenance of nocturnal MCSs and emphasize the need for future studies into the relationship between bores and nocturnal MCSs over China.more » « less
-
Abstract This study investigates a nocturnal mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) field campaign. A series of wavelike features were observed ahead of this MCS with extensive convective initiation (CI) taking place in the wake of one of these disturbances. Simulations with the WRF-ARW Model were utilized to understand the dynamics of these disturbances and their impact on the MCS. In these simulations, an “elevated bore” formed within an inversion layer aloft in response to the layer being lifted by air flowing up and over the cold pool. As the bore propagated ahead of the MCS, the lifting created an environment more conducive to deep convection allowing the MCS to discretely propagate due to CI in the bore’s wake. The Scorer parameter was somewhat favorable for trapping of this wave energy, although aspects of the environment evolved to be consistent with the expectations for an n = 2 mode deep tropospheric gravity wave. A bore within an inversion layer aloft is reminiscent of disturbances predicted by two-layer hydraulic theory, contrasting with recent studies that suggest bores are frequently initiated by the interaction between the flow within stable nocturnal boundary layer and convectively generated cold pools. Idealized simulations that expand upon this two-layer approach with orography and a well-mixed layer below the inversion suggest that elevated bores provide a possible mechanism for daytime squall lines to remove the capping inversion often found over the Great Plains, particularly in synoptically disturbed environments where vertical shear could create a favorable trapping of wave energy.more » « less
-
Rapp, Anita (Ed.)Updrafts in wintertime cloud systems over mountainous regions can be described as fixed, mechanically driven by the terrain under a given ambient wind and stability profile (i.e., vertically propagating gravity waves), and transient, related to vertical wind shear and conditional instability within passing weather systems. This analysis quantifies the magnitude of fixed and transient updraft structures over the Payette River Basin sampled during the Seeded and Natural Orographic Wintertime Clouds: the Idaho Experiment (SNOWIE). Vertical motions were retrieved from Wyoming Cloud Radar measurements of radial velocity using the algorithm presented in Part 1. Transient circulations were removed and fixed orographic circulations were quantified by averaging vertical circulations along repeated cross sections over the same terrain during the campaign. Fixed orographic vertical circulations had magnitudes of 0.3-0.5 m s-1. These fixed vertical circulations comprised a background circulation in which transient circulations were embedded. Transient vertical circulations are shown to be associated with transient wave motions, cloud top generating cells, convection, and turbulence. Representative transient vertical circulations are illustrated and data from rawinsondes over the Payette River Basin are used to infer the relationship of the vertical circulations to shear and instability. Maximum updrafts are shown to exceed 5 m s 1 within Kelvin-Helmholtz waves, 4 m s-1 associated with transient gravity waves, 3 m s-1 in generating cells, 6 m s-1 in elevated convection, 4 m s-1 in surface-based deep convection, 5 m s-1 in boundary layer turbulence, and 9 m s-1 in shear-induced turbulence.more » « less
-
Abstract The sensitivity of low-frequency gravity waves generated during the development and mature stages of an MCS to variations in the characteristics of the rimed ice parameterization were tested through idealized numerical simulations over a range of environment shears and instabilities. Latent cooling in the simulations with less dense, graupel-like rimed ice was more concentrated aloft near the melting level, while cooling in simulations with denser, hail-like rimed ice extended from the melting level to the surface. However, the cooling profiles still had significant internal variability across different environments and over each simulation’s duration. Initial wave production during the MCS developing stage was fairly similar in the hail and graupel simulations. During the mature stages, graupel simulations showed stronger perturbations in CAPE, due to the cooling and associated wave vertical motion being farther aloft; hail simulations showed stronger perturbations in LFC due to cooling and wave vertical motion being concentrated at lower levels. The differences in the cooling profiles were not uniform enough to produce consistently different higher order wave modes. However, the initiation of discrete cells ahead of the convective line was found to be highly sensitive to the nature of the prior destabilizing wave. Individual events of discrete propagation were suppressed in some of the graupel simulations due to the higher location of both peak cooling and vertical wave motion. Such results underscore the need to fully characterize MCS microphysical heating profiles and their low-frequency gravity waves to understand their structure and development.more » « less
An official website of the United States government

