skip to main content


Title: Students' Perceptions and Behavior Related to Second-Chance Testing
This full research paper explores students’ attitudes toward second-chance testing and how second-chance testing influences students’ behavior. Second-chance testing refers to giving students the opportunity to take a second instance of each exam for some sort of grade replacement. Previous work has demonstrated that second-chance testing can lead to improved student outcomes in courses, but how to best structure second-chance testing to maximize its benefits remains an open question. We complement previous work by interviewing a diverse group of 23 students that have taken courses that use second-chance testing. From the interviews, we sought to gain insight into students’ views and use of second-chance testing. We found that second-chance testing was almost universally viewed positively by the students and was frequently cited as helping to reduce test takers’ anxiety and boost their confidence. Overall, we find that the majority of students prepare for second-chance exams in desirable ways, but we also note ways in which second-chance testing can potentially lead to undesirable behaviors including procrastination, over-reliance on memorization, and attempts to game the system. We identified emergent themes pertaining to various facets of second-chance test-taking, including: 1) concerns about the time commitment required for second-chance exams; 2) a belief that second-chance exams promoted fairness; and 3) how second-chance testing incentivized learning. This paper will provide instructors and other stakeholders with detailed insights into students’ behavior regarding second-chance testing, enabling instructors to develop better policies and avoid unintended consequences.  more » « less
Award ID(s):
1915257
NSF-PAR ID:
10317346
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 IEEE Frontiers in Education Conference (FIE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this full research paper, we examine various grading policies for second-chance testing. Second-chance testing refers to giving students the opportunity to take a second version of a test for some form of grade replacement. Second-chance testing as a pedagogical strategy bears some similarities to mastery learning, but second-chance testing is less expensive to implement. Previous work has shown that second-chance testing is associated with improved performance, but there is still a lack of clarity regarding the optimal grading policies for this testing strategy. We interviewed seven instructors who use second-chance testing in their courses to collect data on why they chose specific policies. We then conducted structured interviews with some students (N = 11) to capture more nuance about students’ decision making processes under the different grading policies. Afterwards, we conducted a quasi-experimental study to compare two second-chance testing grading policies and determine how they influenced students across multiple dimensions. We varied the grading policies used in two similar sophomore-level engineering courses. We collected assessment data and administered a survey that queried students (N = 513) about their behavior and reactions to both grading policies. Surprisingly, we found that the students’ preference between these two policies were almost perfectly split. We conclude that there are likely many policies that perform well by being simple and encouraging serious attempts on both tests. 
    more » « less
  2. This full research paper explores how second-chance testing can be used as a strategy for mitigating students’ test anxiety in STEM courses, thereby boosting students’ performance and experiences. Second-chance testing is a testing strategy where students are given an opportunity to take an assessment twice. We conducted a mixed-methods study to explore second-chance testing as a potential solution to test anxiety. First, we interviewed a diverse group of STEM students (N = 23) who had taken courses with second-chance testing to ask about the stress and anxiety associated with testing. We then administered a survey on test anxiety to STEM students in seven courses that offered second-chance tests at Midwestern University (N = 448). We found that second-chance testing led to a 30% reduction in students’ reported test anxiety. Students also reported reduced stress throughout the semester, even outside of testing windows, due to the availability of second-chance testing. Our study included an assortment of STEM courses where second-chance testing was deployed, which indicates that second-chance testing is a viable strategy for reducing anxiety in a variety of contexts. We also explored whether the resultant reduction in test anxiety led to student complacency, encouraged procrastination, or other suboptimal student behavior because of the extra chance provided. We found that the majority of students reported that they worked hard on their initial test attempts even when second-chance testing was available. 
    more » « less
  3. The following is a Theory paper that presents an ethnographic exploration into how concepts are situated in workplace and classroom settings. Situated cognition research demonstrates that different contexts wherein learning occurs and knowledge is applied shape our conceptual understanding. Within engineering education and practice this means that practitioners, students, and instructors demonstrate different ways of representing their conceptual knowledge due to the different contexts wherein they learn and apply engineering concepts. The purpose of this paper is to present themes on how practitioners, students, and instructors represent fundamental structural engineering concepts within the contexts of structural engineering design. By representation of concepts we mean the ways in which practitioners, students, and instructors portray and demonstrate their conceptual understanding of concepts through the social and material contexts of the workplace and classroom environments. Previous research on learning and engineering education has shown the influence that social and material contexts within these environments have on our knowing and understanding. The researchers use ethnographic methods consisting of workplace and classroom observations, interviews with practitioners, students, and instructors, and documentation of workplace and academic artifacts—such as drawings, calculations, and notes—to access practitioners’, students’, and instructors’ conceptual representations. These ethnographic methods are conducted at a private engineering firm and in 300 and 400 level structural engineering courses. Preliminary results indicate that instructors’ conceptual representations in the classroom aim to enhance students’ broader understanding of these concepts; whereas students’ conceptual representations are focused towards utility in solving homework and exam problems. Practitioners’ conceptual representations are more flexible and adapt to project and workplace constraints. These results seem to indicate that even when instructors emphasize broader conceptual knowledge, the academic incentives behind homework and test scores lead to more academically focused conceptual representations by students. Furthermore, practitioners’ conceptual representations indicate the necessity of conceptual fluency in the workplace, which contrasts with the rigidity of conceptual representations that students develop in the classroom. This comparison between workplace and academic conceptual representations enhances our understanding of the extent to which students, instructors, and practitioners share similar or different conceptual representations within the domain of structural engineering. This, in turn, may lead to guided curriculum reform efforts aimed at better preparing structural engineering students for their professional careers. 
    more » « less
  4. null (Ed.)
    We explore how course policies affect students' studying and learning when a second-chance exam is offered. High-stakes, one-off exams remain a de facto standard for assessing student knowledge in STEM, despite compelling evidence that other assessment paradigms such as mastery learning can improve student learning. Unfortunately, mastery learning can be costly to implement. We explore the use of optional second-chance testing to sustainably reap the benefits of mastery-based learning at scale. Prior work has shown that course policies affect students' studying and learning but have not compared these effects within the same course context. We conducted a quasi-experimental study in a single course to compare the effect of two grading policies for second-chance exams and the effect of increasing the size of the range of dates for students taking asynchronous exams. The first grading policy, called 90-cap, allowed students to optionally take a second-chance exam that would fully replace their score on a first-chance exam except the second-chance exam would be capped at 90% credit. The second grading policy, called 90-10, combined students' first- and second-chance exam scores as a weighted average (90% max score + 10% min score). The 90-10 policy significantly increased the likelihood that marginally competent students would take the second-chance exam. Further, our data suggests that students learned more under the 90-10 policy, providing improved student learning outcomes at no cost to the instructor. Most students took exams on the last day an exam was available, regardless of how many days the exam was available. 
    more » « less
  5. The use of writing-based exercises in a circuit analysis course has shown promise in aiding students likely to struggle in the course by enhancing their conceptual understanding of topics related to DC circuit analysis [1]. As grading of writing samples and providing personalized feedback can be time-intensive, automating the evaluation and feedback processes through use of emerging techniques in natural language processing (NLP) could open the door for more widespread use of such writing exercises across STEM courses, thus benefiting students in most need of assistance. In this paper, the development and initial testing of two web-based writing activities that leverage a basic NLP technique to probe student writing related to DC circuits are described. The first writing exercise has students describe what happens to the power of various elements in a resistive circuit as the value of one of the resistors decreases. The second exercise has students consider situations in which the ideal independent voltage and current source models might fail. Both writing exercises are built from a template that includes several metacognitive prompts to spur self-reflection on the part of the user. A rule-based approach was taken to detect evidence of common misconceptions [2] and errors in student responses, as well as to identify sentences that revealed the student was correctly addressing the problems. Based on identified misconceptions or correct concepts in a student’s writing, the web-based application selects appropriate directed line of reasoning (DLR) feedback paths to attempt to lead the writer to an accurate understanding of the behavior of the circuits in question. Key features of the web-based application template as well as details regarding misconception detection and personalized feedback are described. Student impressions of the value of the DLR feedback is assessed using comments provided by the student within the applications. Planned modifications of the web-based writing exercise template based on this formative assessment will be given and address a broader goal of this work – to develop a web-based template that instructors across STEM disciplines, even those without a background in coding, could use to implement their own conceptual writing exercises. 
    more » « less