skip to main content


Title: Watershed and Lake Attributes Dictate Landscape Patterns of Resource Flows in Mountain Lakes
Abstract

The extent to which terrestrial organic matter supports aquatic consumers remains uncertain because factors regulating resource flows are poorly understood. We sampled 12 lakes throughout the Sierra Nevada (California, USA) spanning large gradients in elevation and size to evaluate how watershed attributes and lake morphometry influence resource flows to lake carbon pools and zooplankton. We found that the size and composition of carbon pools in lakes were often more strongly determined by watershed or lake features rather than by elevational position. Using three different tracers of resource origin (δ13C, Δ14C, C:N ratio), we found terrestrial contributions to most lake resource pools (dissolved organic carbon, particulate organic matter (POM), sediments) and pelagic consumers (zooplankton) were more strongly related to local‐scale watershed features such as vegetation cover or watershed area: lake area rather than to elevation. Landscape patterns in multiple tracers indicated consistent contribution of within‐lake C sources to bulk resource pools across elevations (POM, sediments, zooplankton). δ13C‐enrichment of lake C pools and overlap with δ13C of terrestrial resources can arise due to reduced fractionation of13C by phytoplankton under CO2limitation, therefore we recommend careful consideration of potential environmental drivers when interpreting among‐lake patterns in δ13C. Our findings emphasize the importance of local‐scale variation in mediating terrestrial contributions to lake food webs.

 
more » « less
Award ID(s):
1755125
NSF-PAR ID:
10449898
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
4
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arctic rivers provide an integrated signature of the changing landscape and transmit signals of change to the ocean. Here, we use a decade of particulate organic matter (POM) compositional data to deconvolute multiple allochthonous and autochthonous pan-Arctic and watershed-specific sources. Constraints from carbon-to-nitrogen ratios (C:N), δ 13 C, and Δ 14 C signatures reveal a large, hitherto overlooked contribution from aquatic biomass. Separation in Δ 14 C age is enhanced by splitting soil sources into shallow and deep pools (mean ± SD: −228 ± 211 vs. −492 ± 173‰) rather than traditional active layer and permafrost pools (−300 ± 236 vs. −441 ± 215‰) that do not represent permafrost-free Arctic regions. We estimate that 39 to 60% (5 to 95% credible interval) of the annual pan-Arctic POM flux (averaging 4,391 Gg/y particulate organic carbon from 2012 to 2019) comes from aquatic biomass. The remainder is sourced from yedoma, deep soils, shallow soils, petrogenic inputs, and fresh terrestrial production. Climate change-induced warming and increasing CO 2 concentrations may enhance both soil destabilization and Arctic river aquatic biomass production, increasing fluxes of POM to the ocean. Younger, autochthonous, and older soil-derived POM likely have different destinies (preferential microbial uptake and processing vs. significant sediment burial, respectively). A small (~7%) increase in aquatic biomass POM flux with warming would be equivalent to a ~30% increase in deep soil POM flux. There is a clear need to better quantify how the balance of endmember fluxes may shift with different ramifications for different endmembers and how this will impact the Arctic system. 
    more » « less
  2. Abstract

    Ongoing rapid arctic warming leads to extensive permafrost thaw, which in turn increases the hydrologic connectivity of the landscape by opening up subsurface flow paths. Suspended particulate organic matter (POM) has proven useful to trace permafrost thaw signals in arctic rivers, which may experience higher organic matter loads in the future due to expansion and increasing intensity of thaw processes such as thermokarst and river bank erosion. Here we focus on the Kolyma River watershed in Northeast Siberia, the world's largest watershed entirely underlain by continuous permafrost. To evaluate and characterize the present‐day fluvial release of POM from permafrost thaw, we collected water samples every 4–7 days during the 4‐month open water season in 2013 and 2015 from the lower Kolyma River mainstem and from a small nearby headwater stream (Y3) draining an area completely underlain by Yedoma permafrost (Pleistocene ice‐ and organic‐rich deposits). Concentrations of particulate organic carbon generally followed the hydrograph with the highest concentrations during the spring flood in late May/early June. For the Kolyma River, concentrations of dissolved organic carbon showed a similar behavior, in contrast to the headwater stream, where dissolved organic carbon values were generally higher and particulate organic carbon concentrations lower than for Kolyma. Carbon isotope analysis (δ13C, Δ14C) suggested Kolyma‐POM to stem from both contemporary and older permafrost sources, while Y3‐POM was more strongly influenced by in‐stream production and recent vegetation. Lipid biomarker concentrations (high‐molecular‐weightn‐alkanoic acids andn‐alkanes) did not display clear seasonal patterns, yet implied Y3‐POM to be more degraded than Kolyma‐POM.

     
    more » « less
  3. Abstract

    Lakes process both terrestrial and aquatic organic matter, and the relative contribution from each source is often measured via ecosystem metabolism and terrestrial resource use in the food web (i.e., consumer allochthony). Yet, ecosystem metabolism and consumer allochthony are rarely considered together, despite possible interactions and potential for them to respond to the same lake characteristics. In this study, we compiled global datasets of lake gross primary production (GPP), ecosystem respiration (ER), and zooplankton allochthony to compare the strength and shape of relationships with physicochemical characteristics across a broad set of lakes. GPP was positively related to total phosphorus (TP) in lakes with intermediate TP concentrations (11–75 μg L−1) and was highest in lakes with intermediate dissolved organic carbon (DOC) concentrations. While ER and GPP were strongly positively correlated, decoupling occurred at high DOC concentrations. Lastly, allochthony had a unimodal relationship with TP and related variably to DOC. By integrating metabolism and allochthony, we identified similar change points in GPP and zooplankton allochthony at intermediate DOC (4.5–10 mg L−1) and TP (8–20 μg L−1) concentrations, indicating that allochthony and GPP may be coupled and inversely related. The ratio of DOC:nutrients also helped to identify conditions where lake organic matter processing responded more to autochthonous or allochthonous organic matter sources. As lakes globally face eutrophication and browning, predicting how lake organic matter processing will respond requires an updated paradigm that incorporates nonlinear dynamics and interactions.

     
    more » « less
  4. ABSTRACT

    Major shifts in hydroclimate have been documented during the last deglacial period and the Holocene in south‐central Alaska. Rare freshwater calcium carbonate (marl) deposits in lakes on the Kenai Peninsula can be used to reconstruct past changes in hydroclimate, including the influence of groundwater inflow to lakes. Here, the postglacial sediment sequence from groundwater‐fed Kelly Lake (60.514°N, 150.374°W) was analyzed for multiple proxies including isotopes of carbon and oxygen in marl calcite (δ13Cmarland δ18Omarl), and isotopes of carbon (ẟ13COM) and abundances of C and N in organic matter. Bulk sediment analyses include organic matter and calcium carbonate (CaCO3) contents, visual stratigraphy and sediment flux. These analyses extend those of a previous paleoenvironmental reconstruction from Kelly Lake, which focused on sedimentary diatom oxygen isotopes and mass balance modeling over the past 10 000 years. Here, we show that Kelly Lake was deglaciated prior to 14.6 ka, and that by 14.0 ka marl dominated the sediments, with CaCO3precipitation probably driven by groundwater input and mediated by shallow‐water charophytes. Marl accumulation decreased as organic and clastic inputs increased between ~12.2 and 11.5 ka. This shift, together with an increase in both δ13Cmarland δ18Omarlvalues and a decrease in CaCO3content, indicates an increase in the influence of meteoric water on the hydrologic budget under wet conditions, possibly driven by a strengthened Aleutian Low atmospheric pressure cell. A shift to lower δ13Cmarland δ18Omarlvalues at ~11.5 ka is interpreted as an increase in the proportion of groundwater relative to meteoric water in the lake. Beginning around 9 ka, the proportion of meteoric water input continued to increase, the surrounding coniferous forest was established, and by 8 ka, CaCO3accumulation ended. Our results elucidate the environmental conditions under which marl was deposited during the Lateglacial and early Holocene in this part of Alaska, and demonstrate how a variety of synoptic‐ and local‐scale climatic variables can converge to influence sedimentation in a groundwater‐fed lake.

     
    more » « less
  5. Abstract

    Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ∆47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ∆47isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(∆47)), δ18Ocarb, and calculated δ18Owaterin isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.

     
    more » « less