skip to main content

ABSTRACT This study describes a procedural blank assessment of the ultraviolet photochemical oxidation (UV oxidation) method that is used to measure carbon isotopes of dissolved organic carbon (DOC) at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). A retrospective compilation of Fm and δ 13 C results for secondary standards (OX-II, glycine) between 2009 and 2018 indicated that a revised blank correction was required to bring results in line with accepted values. The application of a best-fit mass-balance correction yielded a procedural blank of 22.0 ± 6.0 µg C with Fm of 0.30 ± 0.20 and δ 13 C of –32.0 ± 3.0‰ for this period, which was notably higher and more variable than previously reported. Changes to the procedure, specifically elimination of higher organic carbon reagents and improved sample and reactor handling, reduced the blank to 11.0 ± 2.75 µg C, with Fm of 0.14 ± 0.10 and δ 13 C of –31.0 ± 5.5‰. A thorough determination of the entire sample processing blank is required to ensure accurate isotopic compositions of seawater DOC using the UV oxidation method. Additional efforts are needed to further reduce the procedural blank so that smaller DOC samples can be analyzed, and more » to increase sample throughput. « less
; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016More>>
  2. Abstract Speleothem organic matter can be a powerful tracer for past environmental conditions and karst processes. Carbon isotope measurements (δ 13 C and 14 C) in particular can provide crucial information on the provenance and age of speleothem organic matter, but are challenging due to low concentrations of organic matter in stalagmites. Here, we present a method development study on extraction and isotopic characterization of speleothem organic matter using a rapid procedure with low laboratory contamination risk. An extensive blank assessment allowed us to quantify possible sources of contamination through the entire method. Although blank contamination is consistently low (1.7more »± 0.34 – 4.3 ± 0.86 μg C for the entire procedure), incomplete sample decarbonation poses a still unresolved problem of the method, but can be detected when considering both δ 13 C and 14 C values. We test the method on five stalagmites, showing reproducible results on samples as small as 7 μg C for δ 13 C and 20 μg C for 14 C. Furthermore, we find consistently lower non-purgeable organic carbon (NPOC) 14 C values compared to the carbonate 14 C over the bomb spike interval in two stalagmites from Yok Balum Cave, Belize, suggesting overprint of a pre-aged or even fossil source of carbon on the organic fraction incorporated by these stalagmites.« less
  3. ABSTRACT Replicate radiocarbon ( 14 C) measurements of organic and inorganic control samples, with known Fraction Modern values in the range Fm = 0–1.5 and mass range 6 μg–2 mg carbon, are used to determine both the mass and radiocarbon content of the blank carbon introduced during sample processing and measurement in our laboratory. These data are used to model, separately for organic and inorganic samples, the blank contribution and subsequently “blank correct” measured unknowns in the mass range 25–100 μg. Data, formulas, and an assessment of the precision and accuracy of the blank correction are presented.
  4. Abstract. Important uncertainties remain in our understanding of the spatial andtemporal variability of atmospheric hydroxyl radical concentration ([OH]).Carbon-14-containing carbon monoxide (14CO) is a useful tracer that canhelp in the characterization of [OH] variability. Prior measurements ofatmospheric 14CO concentration ([14CO] are limited in both theirspatial and temporal extent, partly due to the very large air sample volumes that have been required for measurements (500–1000 L at standardtemperature and pressure, L STP) and the difficulty and expense associatedwith the collection, shipment, and processing of such samples. Here wepresent a new method that reduces the air sample volume requirement to≈90 L STP while allowing for [14CO] measurementmore »uncertainties that are on par with or better than prior work (≈3 % or better, 1σ). The method also for the first time includes accurate characterization of the overall procedural [14CO] blank associated with individual samples, which is a key improvement over prior atmospheric 14CO work. The method was used to make measurements of [14CO] at the NOAA Mauna Loa Observatory, Hawaii, USA, between November 2017 and November 2018. The measurements show the expected [14CO] seasonal cycle (lowest in summer)and are in good agreement with prior [14CO] results from anotherlow-latitude site in the Northern Hemisphere. The lowest overall [14CO]uncertainties (2.1 %, 1σ) are achieved for samples that aredirectly accompanied by procedural blanks and whose mass is increased to≈50 µgC (micrograms of carbon) prior to the 14Cmeasurement via dilution with a high-CO 14C-depleted gas.« less
  5. ABSTRACT The Belfast Ramped Pyroxidation/Combustion (RPO/RC) facility was established at the 14 CHRONO Centre (Queen’s University Belfast). The facility was created to provide targeted analysis of bulk material for refined chronological analysis and carbon source attribution for a range of sample types. Here we report initial RPO results, principally on background material, but also including secondary standards that are routinely analyzed at 14 CHRONO. A description of our setup, methodology, and background (blank) correction method for the system are provided. The backgrounds (anthracite, spar calcite, Pargas marble) reported by the system are in excess of 35,000 14 C years BPmore »with a mean age of 39,345 14 C years BP (1σ = 36,497–43,800 years BP, N=44) with F 14 C = 0.0075 ± 0.0032. Initial results for standards are also in good agreement with consensus values: TIRI-B pine radiocarbon age = 4482 ± 47 years BP (N=13, consensus = 4508 years BP); IAEA-C6 ANU Sucrose F 14 C= 1.5036 ± 0.0034 (N=10, consensus F 14 C = 1.503). These initial tests have allowed problematic issues to be identified and improvements made for future analyses.« less