ABSTRACT This note describes improvements of UV oxidation method that is used to measure carbon isotopes of dissolved organic carbon (DOC) at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). The procedural blank is reduced to 2.6 ± 0.6 μg C, with Fm of 0.42 ± 0.10 and δ 13 C of –28.43 ± 1.19‰. The throughput is improved from one sample per day to two samples per day. 
                        more » 
                        « less   
                    
                            
                            RADIOCARBON IN DISSOLVED ORGANIC CARBON BY UV OXIDATION: PROCEDURES AND BLANK CHARACTERIZATION AT NOSAMS
                        
                    
    
            ABSTRACT This study describes a procedural blank assessment of the ultraviolet photochemical oxidation (UV oxidation) method that is used to measure carbon isotopes of dissolved organic carbon (DOC) at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). A retrospective compilation of Fm and δ 13 C results for secondary standards (OX-II, glycine) between 2009 and 2018 indicated that a revised blank correction was required to bring results in line with accepted values. The application of a best-fit mass-balance correction yielded a procedural blank of 22.0 ± 6.0 µg C with Fm of 0.30 ± 0.20 and δ 13 C of –32.0 ± 3.0‰ for this period, which was notably higher and more variable than previously reported. Changes to the procedure, specifically elimination of higher organic carbon reagents and improved sample and reactor handling, reduced the blank to 11.0 ± 2.75 µg C, with Fm of 0.14 ± 0.10 and δ 13 C of –31.0 ± 5.5‰. A thorough determination of the entire sample processing blank is required to ensure accurate isotopic compositions of seawater DOC using the UV oxidation method. Additional efforts are needed to further reduce the procedural blank so that smaller DOC samples can be analyzed, and to increase sample throughput. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1755125
- PAR ID:
- 10317485
- Date Published:
- Journal Name:
- Radiocarbon
- Volume:
- 63
- Issue:
- 1
- ISSN:
- 0033-8222
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Replicate radiocarbon ( 14 C) measurements of organic and inorganic control samples, with known Fraction Modern values in the range Fm = 0–1.5 and mass range 6 μg–2 mg carbon, are used to determine both the mass and radiocarbon content of the blank carbon introduced during sample processing and measurement in our laboratory. These data are used to model, separately for organic and inorganic samples, the blank contribution and subsequently “blank correct” measured unknowns in the mass range 25–100 μg. Data, formulas, and an assessment of the precision and accuracy of the blank correction are presented.more » « less
- 
            Abstract Speleothem organic matter can be a powerful tracer for past environmental conditions and karst processes. Carbon isotope measurements (δ 13 C and 14 C) in particular can provide crucial information on the provenance and age of speleothem organic matter, but are challenging due to low concentrations of organic matter in stalagmites. Here, we present a method development study on extraction and isotopic characterization of speleothem organic matter using a rapid procedure with low laboratory contamination risk. An extensive blank assessment allowed us to quantify possible sources of contamination through the entire method. Although blank contamination is consistently low (1.7 ± 0.34 – 4.3 ± 0.86 μg C for the entire procedure), incomplete sample decarbonation poses a still unresolved problem of the method, but can be detected when considering both δ 13 C and 14 C values. We test the method on five stalagmites, showing reproducible results on samples as small as 7 μg C for δ 13 C and 20 μg C for 14 C. Furthermore, we find consistently lower non-purgeable organic carbon (NPOC) 14 C values compared to the carbonate 14 C over the bomb spike interval in two stalagmites from Yok Balum Cave, Belize, suggesting overprint of a pre-aged or even fossil source of carbon on the organic fraction incorporated by these stalagmites.more » « less
- 
            Abstract The moderate DI13C isotope enrichment (MoDIE) method by Powers et al. (2017) is a promising method to precisely measure the photochemical mineralization of dissolved organic carbon (DOC) in water samples without dramatically altering a sample's pH or organic carbon pool. Here, we evaluated the analytical uncertainties of the MoDIE method and used Monte Carlo simulations to optimize the experimental design for the most precise measurements of dissolved inorganic carbon (DIC) that is produced photochemically (DIChν). Analytically, we recommend calculating yields of DIChvwith an exact expression of conservation of mass that intrinsically reduces error and uncertainty. Methodologically, the overall uncertainty and detection limit of the MoDIE method can be significantly reduced by partially stripping away the original DIC pool, enriching the residual DIC with more DI13C, and increasing the yields of DIChvvia longer irradiation. Instrumentally, more precise measurements of enriched δ13C values before and after irradiation are needed to further improve the precision of DIChνconcentration determinations. Higher precision DIChvmeasurements via the optimized MoDIE method can improve our understanding of the photochemical mineralization of DOC and thus the budget of marine DOC. The optimizations and detection limits reported here will become more refined as measurements and associated uncertainties from future MoDIE experiments become available.more » « less
- 
            Abstract Investigations of abiotic and biotic contributions to dissolved organic carbon (DOC) are required to constrain microbial habitability in continental subsurface fluids. Here we investigate a large (101–283 mg C/L) DOC pool in an ancient (>1Ga), high temperature (45–55 °C), low biomass (102−104cells/mL), and deep (3.2 km) brine from an uranium-enriched South African gold mine. Excitation-emission matrices (EEMs), negative electrospray ionization (–ESI) 21 tesla Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and amino acid analyses suggest the brine DOC is primarily radiolytically oxidized kerogen-rich shales or reefs, methane and ethane, with trace amounts of C3–C6hydrocarbons and organic sulfides. δ2H and δ13C of C1–C3hydrocarbons are consistent with abiotic origins. These findings suggest water-rock processes control redox and C cycling, helping support a meagre, slow biosphere over geologic time. A radiolytic-driven, habitable brine may signal similar settings are good targets in the search for life beyond Earth.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    