[Mn(bpy)(CO) 3 Br] is recognized as a benchmark electrocatalyst for CO 2 reduction to CO, with the doubly reduced [Mn(bpy)(CO) 3 ] − proposed to be the active species in the catalytic mechanism. The reaction of this intermediate with CO 2 and two protons is expected to produce the tetracarbonyl cation, [Mn(bpy)(CO) 4 ] + , thereby closing the catalytic cycle. However, this species has not been experimentally observed. In this study, [Mn(bpy)(CO) 4 ][SbF 6 ] ( 1 ) was directly synthesized and found to be an efficient electrocatalyst for the reduction of CO 2 to CO in the presence of H 2 O. Complex 1 was characterized using X-ray crystallography as well as IR and UV-Vis spectroscopy. The redox activity of 1 was determined using cyclic voltammetry and compared with that of benchmark manganese complexes, e.g. , [Mn(bpy)(CO) 3 Br] ( 2 ) and [Mn(bpy)(CO) 3 (MeCN)][PF 6 ] ( 3 ). Infrared spectroscopic analyses indicated that CO dissociation occurs after a single-electron reduction of complex 1 , producing a [Mn(bpy)(CO) 3 (MeCN)] + species. Complex 1 was experimentally verified as both a precatalyst and an on-cycle intermediate in homogeneous Mn-based electrocatalytic CO 2 reduction. 
                        more » 
                        « less   
                    
                            
                            Non-covalent assembly of proton donors and p- benzoquinone anions for co-electrocatalytic reduction of dioxygen
                        
                    
    
            The two-electron and two-proton p -hydroquinone/ p -benzoquinone (H 2 Q/BQ) redox couple has mechanistic parallels to the function of ubiquinone in the electron transport chain. This proton-dependent redox behavior has shown applicability in catalytic aerobic oxidation reactions, redox flow batteries, and co-electrocatalytic oxygen reduction. Under nominally aprotic conditions in non-aqueous solvents, BQ can be reduced by up to two electrons in separate electrochemically reversible reactions. With weak acids (AH) at high concentrations, potential inversion can occur due to favorable hydrogen-bonding interactions with the intermediate monoanion [BQ(AH) m ]˙ − . The solvation shell created by these interactions can mediate a second one-electron reduction coupled to proton transfer at more positive potentials ([BQ(AH) m ]˙ − + n AH + e − ⇌ [HQ(AH) (m+n)−1 (A)] 2− ), resulting in an overall two electron reduction at a single potential at intermediate acid concentrations. Here we show that hydrogen-bonded adducts of reduced quinones and the proton donor 2,2,2-trifluoroethanol (TFEOH) can mediate the transfer of electrons to a Mn-based complex during the electrocatalytic reduction of dioxygen (O 2 ). The Mn electrocatalyst is selective for H 2 O 2 with only TFEOH and O 2 present, however, with BQ present under sufficient concentrations of TFEOH, an electrogenerated [H 2 Q(AH) 3 (A) 2 ] 2− adduct (where AH = TFEOH) alters product selectivity to 96(±0.5)% H 2 O in a co-electrocatalytic fashion. These results suggest that hydrogen-bonded quinone anions can function in an analogous co-electrocatalytic manner to H 2 Q. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2102156
- PAR ID:
- 10317598
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 12
- Issue:
- 28
- ISSN:
- 2041-6520
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Solvent molecules influence the reactions of molecular hydrogen and oxygen on palladium nanoparticles. Organic solvents activate to form reactive surface intermediates that mediate oxygen reduction through pathways distinct from reactions in pure water. Kinetic measurements and ab initio quantum chemical calculations indicate that methanol and water cocatalyze oxygen reduction by facilitating proton-electron transfer reactions. Methanol generates hydroxymethyl intermediates on palladium surfaces that efficiently transfer protons and electrons to oxygen to form hydrogen peroxide and formaldehyde. Formaldehyde subsequently oxidizes hydrogen to regenerate hydroxymethyl. Water, on the other hand, heterolytically oxidizes hydrogen to produce hydronium ions and electrons that reduce oxygen. These findings suggest that reactions of solvent molecules at solid-liquid interfaces can generate redox mediators in situ and provide opportunities to substantially increase rates and selectivities for catalytic reactions.more » « less
- 
            Harnessing the power of photosynthesis to catalyze novel light-driven redox chemistry requires a way to intercept electron flow directly from the photosynthetic electron transport chain (PETC). As a proof of concept, an in vivo fusion of photosystem I (PSI) and algal hydrogenase was created by insertion of the HydA sequence into the PsaC subunit. The PSI and hydrogenase portions are co-assembled and active in vivo , effectively creating a new photosystem. Cells expressing only the PSI-hydrogenase chimera make hydrogen at high rates in a light-dependent fashion for several days. In these engineered cells, photosynthetic electron flow is directed away from CO 2 fixation and towards proton reduction, demonstrating the possibility of driving novel redox chemistries using electrons from water splitting and the photosynthetic electron transport chain.more » « less
- 
            Manganese( i ) tricarbonyl complexes such as [Mn(bpy)(CO) 3 L] (L = Br, or CN) are known to be electrocatalysts for CO 2 reduction to CO. However, due to their rapid photodegradation under UV and visible light, these monomeric manganese complexes have not been considered as photocatalysts for CO 2 reduction without the use of a photosensitizer. In this paper, we report a cyanide-bridged di-manganese complex, {[Mn(bpy)(CO) 3 ] 2 (μ-CN)}ClO 4 , which is both electrocatalytic and photochemically active for CO 2 reduction to CO. Compared to the [Mn(bpy)(CO) 3 CN] electrocatalyst, our CN-bridged binuclear complex is a more efficient electrocatalyst for CO 2 reduction using H 2 O as a proton source. In addition, we report a photochemical CO 2 reduction to CO using the dimanganese complex under 395 nm irradiation.more » « less
- 
            Palladium(II) catalysts promote oxidative dehydrogenation and dehydrogenative coupling of many organic molecules. Oxidations of alcohols to aldehydes or ketones are prominent examples. Hydroquinone (H2Q) oxidation to benzoquinone (BQ) is conceptually related to alcohol oxidation, but it is significantly more challenging thermodynamically. The BQ/H2Q redox potential is sufficiently high that BQ is often used as an oxidant in Pd-catalyzed oxidation reactions. A recent report (J. Am. Chem. Soc.2020, 142, 19678–19688) showed that certain ancillary ligands can raise the PdII/0 redox potential sufficiently to reverse this reactivity, enabling (L)PdII(OAc)2 to oxidize hydroquinone to benzoquinone. Here, we investigate the oxidation of tert-butylhydroquinone (tBuH2Q) and 4-fluorobenzyl alcohol (4FBnOH), mediated by (bc)Pd(OAc)2 (bc = bathocuproine). Although alcohol oxidation is thermodynamically favored over H2Q oxidation by more than 400 mV, the oxidation of tBuH2Q proceeds several orders of magnitude faster than 4FBnOH oxidation. Kinetic and mechanistic studies reveal that these reactions feature different rate-limiting steps. Alcohol oxidation proceeds via rate-limiting β-hydride elimination from a PdII-alkoxide intermediate, while H2Q oxidation features rate-limiting isomerization from an O-to-C-bound PdII-hydroquinonate species. The enhanced rate of H2Q oxidation reflects the kinetic facility of O–H relative to C–H bond cleavage.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    